1/35
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
(sin x)'
cosx
(cos x)'
-sinx
(tan x)'
sec^2 x
(sec x)'
secx tanx
(csc x)'
-cscx cotx
(cot x)'
-csc^2 x
(arcSin u)'
u' / (1-u^2)^1/2
(arcCos x)'
- u' / (1- u^2)^1/2
(arcTan x)'
u' / u^2 + 1
(arcSec x)'
u' / |u| (u^2 - 1)^1/2
(arcCsc x)'
- u' / |u| (u^2 - 1)^1/2
(arcCot x)'
- u' / u^2 + 1
(Ln u)'
u' / u
(e^(u))'
u' e^(u)
ʃ x^n dx
(x^(n+1)) / (n+1) + C
ʃ 1/x dx
Ln x + C
ʃ 1/ x^2 dx
-1/x + C
ʃ dx /(x + b) dx
Ln |x + b| + C
ʃ sinx dx
-cosx + C
ʃ sin ax dx
(-cos ax) / a + C
ʃ cosx dx
sinx + C
ʃ cos ax dx
(sin ax) / a + C
ʃ tanx dx
{ Ln |secx| + C
- Ln |cosx + C }
ʃ secx dx
Ln |secx + tanx| + C
ʃ secx tanx dx
secx + C
ʃ sec^2 x dx
tanx + C
ʃ e^x dx
e^x + C
ʃ e^(ax) dx
(1/a) e^(ax) + C
ʃ dx /(x + b)
Ln |x + b| + C
ʃ dx /(ax + b)
(1/a) Ln |ax + b| + C
First Fundamental Theorem
ʃab f(x) dx = F(b) - F(a)
ʃab f '(x) dx = f(b) - f(a)
* f is continuous on (a, b)
* F is any anti-derivative of f
Second Fundamental Theorem
F(x) = ʃax f(t) dt
F'(x) = f(x) or d/dx (ʃax f(t) dt) = f(x)
* f is continuous on the open interval
Trapezoid Rule
ʃab f(x) dx ~= ((b-a)/2n) [A + 2B + 2C + 2D + E] if n=4
Right RAM
(w1 B) + (w2 C) + (w3 D) + (w4 E) [A,E]
w = distance from previous x point, [letter] = y value at the point
Left RAM
(w1 A) + (w2 B) + (w3 C) + (w4 D) [A,E]
w = distance from previous x point, [letter] = y value at the point
Midpoint RAM
(w1 A) + (w2 B) + (w3 C) + (w4 D) + (w4 * D) [A,E]
(use the x and y coordinates in the MIDDLE of each region)