1/15
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced | Call with Kai |
|---|
No analytics yet
Send a link to your students to track their progress
sin²x Identities
sin²x = 1-cos²x
sin²x = (1-cos2x)/2
cos²x Identities
cos²x = 1-sin²x
cos²x= (1+cos2x)/2
Integration by Parts Formula
∫u*dv = u*v - ∫v*dv
LIPET Acronym - Integration by Parts
Logarithmic, Inverse Trig, Polynomial, Exponential, Trogonometry
Determines u
sec²x Identity
Sec²x = 1 + tan²x
Integral of secxdx = ln|secx+tanx| + C
tan²x Identity
tan²x = sec²x-1
Integral of tanxdx = -ln|cosx|+C
Trigonometric Substitution - sqrt(a²-u²)
x = a*sin(theta)
sqrt(a²-u²) = a*cos(theta)
Trigonometric Substitution - sqrt(a²+u²)
x = a*tan(theta)
sqrt(a²+u²) = a*sec(theta)
Trigonometric Substitution - sqrt(u²-a²)
x = a*sec(theta)
sqrt(u²-a²) = a*tan(theta)
d/dx(sinx)
cosx
d/dx(cosx)
-sinx
d/dx(tanx)
sec²x
d/dx(secx)
secxtanx
d/dx(cscx)
-cscxcotx
d/dx(cotx)
-csc²x