Results for "daughter cell"

Filters

Flashcards

Question: Bile is a substance secreted to help digest fats. Bile is stored in the: Answer: Gallbladder Question: Which element in the protein hemoglobin, found in red blood cells, is responsible for binding oxygen? Answer: Iron Question: When a blood vessel is injured, which of the following is responsible for clotting? Answer: Platelets Question: If CaCl2 is mixed with Na2SO4 in aqueous solution, which of the following is a possible product? Answer: NaCl Question: The Earth is about 4.5 billion years old. About how many years ago did life first appear? Answer: 3.5 billion years Question: The sun’s energy reaches the Earth’s surface primarily in the form of: Answer: Visible light radiation Question: Which type of rock would likely be found at the bottom of a river bed? Answer: Sedimentary Question: Which of the following statements about the Earth is true? Answer: The mantle makes up the largest percentage of the Earth’s volume Question: If an unbalanced force acts on an object, then the object will begin to accelerate according to: Answer: Newton’s Second Law Question: In meiosis, one parent cell becomes how many daughter cells? Answer: 4 Question: The potential energy of an object with a mass of 5kg that is placed 20 meters above the surface of the earth is most nearly: Answer: 981 Joules Question: One of the reasons bacteria can be so deadly is because they multiply very quickly. E. coli has a doubling time of around 15 minutes. This means that if 100 bacteria are left alone for 2 hours, they will multiply to become: Answer: 25,600 Bacteria Question: Organisms which help one another survive by providing a mutual benefit to each other are known as: Answer: Symbionts Question: In taxonomy, which classification comes after ‘family’? Answer: Genus Question: All of the following are phenotypic traits except for: Answer: Missing 22nd chromosome Question: The cell membrane is a structure composed primarily of: Answer: Lipid Question: Of the following layers of the atmosphere, which is the closest to the earth’s surface and contains the majority of clouds? Answer: Troposphere Question: Which of the following body systems is most closely associated with the immune system? Answer: Lymphatic System Question: One of the primary characteristics of a bacteria is its: Answer: Lack of a nuclear membrane Question: Which of the following planets has a perfectly circular orbit? Answer: None Question: Sound waves will travel the fastest in a medium that is: Answer: The most dense Question: A calorie is actually a measure of energy, and is equivalent to how many Joules? Answer: 4.18 Question: What is the molecular weight of the compound C2H5O? Answer: 45 Question: Craig ran 2.5 miles on his afternoon run. How many feet did he run? Answer: 13,200 feet Question: The earth’s surface is covered by approximately what percent water? Answer: 70% Question: Blood that flows back from the body will enter the heart through the: Answer: Right Atrium Question: A nerve impulse is transmitted through your nervous system primarily by: Answer: An electric potential Question: All magnets have two poles which can be used to predict the direction of their magnetic waves. These two poles are the: Answer: South and North Question: Approximately how many bones exist in the human body? Answer: 200 Question: The nucleus of an atom is composed of: Answer: Protons and neutrons Question: What is the second most abundant gas in the atmosphere? Answer: Oxygen Question: As light passes through a substance, the incident angle changes, meaning the light’s entering angle is different than its exiting angle. This is an example of: Answer: Refraction Question: If one tectonic plate slides under another, the process is known as: Answer: Subduction Question: Carbon dioxide can be consumed and converted into glucose by what type of organism? Answer: Plants Question: Two separate weather fronts will have air that is of different: Answer: Density Question: Plants are autotrophs, meaning that they: Answer: Are able to produce their own food Question: Plant and animal cells both have cell membranes and nuclear membranes. However, plant cells have a structure that animal cells do not, known as a: Answer: Cell Wall Question: Muscles in the human body require what energy compound to function? Answer: ATP Question: When a human cell divides in mitosis, the two daughter cells will each have: Answer: 46 Chromosomes Question: In an electromagnetic wave, as the frequency of the wave becomes greater, what becomes shorter? Answer: The wavelength Question: Which of the following time periods is the longest? Answer: Eon Question: In the lily flower, the red color is dominant and the white color is recessive. This means that if you cross a homozygous red flower with a white one, the offspring will be: Answer: All red Question: Which of the following is a characteristic of the tundra ecological biome? Answer: Landscape dominated by shrubs and short trees Question: A train travels at 25 mph for 3 hours. How far did the train move? Answer: 75 miles Question: A solution contains 0.1 molar hydrogen ions (H+). This means the solution is likely: Answer: Around pH 1
Updated 222d ago
flashcards Flashcards (5)
biology 2.1Unit 2.1: Mitosis and Meiosis Introduction By the end of this section, you should be able to: Define a chromosome. Define DNA as the genetic material. Define genes. Describe the structure of chromosomes. Describe the components of DNA. Define mitosis and describe its stages. Define meiosis and describe its stages. Relate the events of meiosis to the formation of sex cells. Compare mitosis and meiosis. Chromosomes, Genes, and DNA Almost all the cells of your body—except for mature red blood cells—contain a nucleus, which acts as the control center of the cell. The nucleus holds all the information needed to make a new cell and, ultimately, a new individual. Inside the nucleus are chromosomes, thread-like structures that store genetic information passed from parents to offspring. Chromosomes are made up of DNA (deoxyribonucleic acid), a molecule that carries the instructions needed to make all the proteins in your body. Many of these proteins are enzymes, which control the production of other chemicals and affect everything about how your body functions. Each species has a specific number of chromosomes: Humans have 46 chromosomes (23 pairs). Tomatoes have 24 chromosomes (12 pairs). Elephants have 56 chromosomes (28 pairs). Half of your chromosomes come from your mother, and the other half from your father. These chromosomes are arranged in homologous pairs, meaning they contain matching sets of genes. A karyotype is a special photograph that arranges chromosomes into their pairs. In humans, 22 pairs of chromosomes are called autosomes, which control most body functions. The 23rd pair is the sex chromosomes, which determine whether you are male or female: Females have two X chromosomes (XX). Males have one X and one Y chromosome (XY). DNA Structure DNA is a long, twisted molecule shaped like a double helix (a spiraled ladder). Each strand of DNA is made up of smaller molecules called nucleotides, which consist of: A phosphate group A sugar (deoxyribose) A nitrogen base The four nitrogen bases in DNA are: Adenine (A) → Always pairs with Thymine (T) Cytosine (C) → Always pairs with Guanine (G) Genes are small segments of DNA that carry instructions for making proteins. The sequence of these bases acts like a biological code, directing the cell to create specific proteins. In 1953, James Watson and Francis Crick, using data from Rosalind Franklin’s X-ray photographs, discovered the double-helix structure of DNA. Their discovery led to a huge increase in genetic research, including the Human Genome Project, which mapped all human genes. Mitosis (Cell Division for Growth and Repair) All body cells (somatic cells) divide using mitosis, a type of cell division that creates two identical daughter cells. Mitosis is essential for: Growth (producing new cells). Tissue repair (replacing damaged or old cells). Asexual reproduction (producing offspring with identical DNA). Stages of Mitosis Interphase The cell prepares for division by copying its DNA. Chromosomes are not visible under a microscope. Prophase Chromosomes condense and become visible. The nuclear membrane breaks down. Metaphase Chromosomes line up in the center of the cell. Spindle fibers attach to each chromosome. Anaphase The spindle fibers pull the sister chromatids apart to opposite ends of the cell. Telophase A new nuclear membrane forms around each set of chromosomes. The cell is almost ready to split. Cytokinesis The cytoplasm divides, forming two identical daughter cells. Mitosis is constantly occurring in areas like your skin and bone marrow, where new cells are needed regularly. Meiosis (Cell Division for Reproduction) Unlike mitosis, meiosis occurs only in the reproductive organs (testes in males, ovaries in females) and produces gametes (sperm and egg cells). Gametes have half the number of chromosomes (haploid, n=23) so that when fertilization occurs, the new cell has the correct chromosome number (diploid, 2n=46). Stages of Meiosis Meiosis consists of two rounds of cell division, resulting in four non-identical cells. Meiosis I: Prophase I – Chromosomes pair up and exchange genetic material (crossing over). Metaphase I – Chromosome pairs line up in the center of the cell. Anaphase I – Chromosome pairs separate and move to opposite ends of the cell. Telophase I & Cytokinesis – The cell splits into two haploid daughter cells. Meiosis II (similar to mitosis): 5. Prophase II – Chromosomes condense again. 6. Metaphase II – Chromosomes line up in the center. 7. Anaphase II – Sister chromatids separate and move to opposite sides. 8. Telophase II & Cytokinesis – Four unique haploid gametes are formed. Each gamete is genetically different due to crossing over and random chromosome distribution. Mitosis vs. Meiosis: Key Differences Importance of Mitosis and Meiosis Mitosis ensures that cells grow, repair damage, and replace old cells. Meiosis allows genetic diversity, which is essential for evolution and survival. Summary Chromosomes carry genetic information in the form of DNA. Genes are sections of DNA that code for proteins. Mitosis produces two identical daughter cells for growth and repair. Meiosis creates four non-identical sex cells for reproduction. Mitosis ensures genetic stability, while meiosis introduces genetic diversity
Updated 228d ago
flashcards Flashcards (6)
Know the relationship between molecular weight and rate of diffusion The rate of diffusion is inversely proportional to the molecular weight Small weight-fast diffusion; heavy weight-slow diffusion Identify RBC’s in various solution and determine tonicity Tonicity - the ability of an extracellular solution to make water move into or out of a cell by osmosis If a cell is placed in a hypertonic solution, there will be a net flow of water out of the cell, and the cell will lose volume (shrink). A solution will be hypertonic to a cell if its solute concentration is higher than that inside the cell, and the solutes cannot cross the membrane. If a cell is placed in a hypotonic solution, there will be a net flow of water into the cell, the cell will gain volume (bigger). If the solute concentration outside the cell is lower than inside the cell, then solutes cannot cross the membrane, then the solution is hypotonic to the cell. If a cell is placed in an isotonic solution, there will be no set flow of water into or out of the cell, and the cell’s volume will remain stable. If the solute concentration outside the cell is the same as inside the cell, and the solutes cannot cross the membrane, the solution is isotonic to the cell. Homeostatic feedback loop for respiratory rate, heart rate and temperature Respiratory Rate: Stimulus : The level of carbon dioxide (CO2) in the blood increases (often due to exercise or hypoventilation) . Receptors: Chemoreceptors in the medulla oblongata, carotid arteries, and aortic arch detect changes in blood pH and CO2 levels Control Center: The medulla oblongata processes this information Effectors: Respiratory muscles (diaphragm and intercostal) adjust breathing rate and depth Response: Increased respiratory rate removes CO2 and increases O2 intake, restoring normal pH and gas levels. Heart Rate: Stimulus : Changes in blood pressure, O2, CO2, or pH levels Receptors: Baroreceptors (detect blood pressure changes) in the carotid sinus and aortic arch; chemoreceptors monitor blood chemistry Control Center: The medulla oblongata (cardiac center) processes signals Effectors : The autonomic nervous system (ANS) adjusts heart rate through the sympathetic nervous system (increases heart rate) or parasympathetic nervous system (decreases heart rate) Response : Heart rate increases during low O2 or low blood pressure (to circulate oxygen) and decreases when homeostasis is restored. Temperature Regulation Stimulus: Changes in body temperature (hyperthermia or hypothermia) Receptors: Thermoreceptors in the skin and hypothalamus detect temperature fluctuations. Control Center: The hypothalamus processes this information and signals effectors Effectors and Responses: If too hot: Blood vessels dilate (vasodilation) to release heat, and sweat glands produce sweat for cooling If too cold: Blood vessels constrict (vasoconstriction) to retain heat, and shivering generates warmth. Steps of a generic homeostatic feedback loop Stimulus : A change in the internal or external environment that disrupts homeostasis (eg. temperature change, pH levels, blood sugar levels) Sensor (Receptor) : Specialized cells or receptors detect the change and send information to the control center. Control Center (Integrator): Often the brain or endocrine glands, this component processes the information from the sensors and determines the appropriate response to restore balance. Effector: This component carries out the response to the stimulus as dictated by the control center. Effectors can be muscles or glands that help to counteract the change. Response: The action taken by the effectors to restore homeostasis. This could involve increasing or decreasing a physiological process (e.g. sweating to cool down or shivering to warm up) Feedback: The results of the response are monitored. If homeostasis is restored, the system maintains its state; if not, the loop may repeat, continuing to adjust until balance is achieved. How to evaluate data to determine the set point, error, and disturbance Identify the set point The set point is the optimal level or range that the system aims to maintain. To determine the set point: Gather baseline data: Collect data over a period to understand the normal range for the variable in question (e.g. body temp., BP, blood glucose levels) Analyze Trends: Look for patterns in the data to identify the average or median value that represents the stable condition of the system. Consult Literature: Reference established physiological norms or previous studies to confirm the typical set point for the variable. Assess Disturbance A disturbance is any factor or event that causes a deviation from the set point. To evaluate disturbances: Identify External and Internal Factors: Analyze the data for any external influences (e.g. environmental changes, dietary habits) or internal changes (e.g. illness, stress) that might have impacted the variable. Quantity Disturbance: Measure the magnitude and duration of the disturbance. This can be done by comparing the data points during the disturbance against the established set point. Monitor Changes: Track how the system responds to disturbances over time to assess their impact on maintaining homeostasis. WBC types and normal distribution values/ abnormal values and what those values indicate (infections/diseases) (Never Let Monkeys Eat Bananas) Neutrophils (50-70%) - First responders to infections, especially bacterial. High levels indicate bacterial infections, inflammation, or stress. Low levels can indicate bone marrow disorders or severe infections. Lymphocytes (20-40%) - Include B cells and T cells, important for immunity. High levels can suggest viral infections or leukemia, while low levels might indicate immune deficiency. Monocytes (2-8%) - Help with cleaning up dead cells and fighting infections. High levels can be linked to chronic infections or autoimmune diseases. Eosinophils (1-4%) - Involved in allergic reactions and fighting parasites. Elevated levels may indicate allergies or parasitic infections. Basophils (0.5-1%) - Release histamine during allergic reactions. High levels might be see in allergic conditions or blood disorders. Normal WBC Count Total WBC Count: 4000-11000 cells per microliter of blood (varies slightly by lab) Leukocytosis (High WBC): Can indicate infection, inflammation, stress, or leukemia Leukopenia (Low WBC): Can result from bone marrow disorders, viral infections, or autoimmune diseases Neutrophils: Banded vs Segmented Neutrophils are the most abundant type of white blood cells and play a crucial role in fighting infections. They exist in different stages of maturation: Banded Neutrophils (“Bands”) - Immature Neutrophils Appearance: Have a curved, unsegmented nucleus (band-shaped) Normal Range: 0-6% of total WBC count (~0-700/uL) Clinical Significance: Increased Bands (Bandemia) -> Indicates an acute bacterial infection or severe stress (e.g. sepsis). The bone marrow releases immature neutrophils in response to infection. Low Bands -> Not clinically significant unless the total WBC count is low, which could suggest bone marrow suppression. Segmented Neutrophils (“Segs”) - Mature Neutrophils Appearance: Have a segmented nucleus with 2-5 lobes Normal Range: 50-70% of total WBC count (~2500-7000/uL) Clinical Significance: High Segs (Neutrophilia) -> Suggests bacterial infections, stress, chronic inflammation, or leukemia Low Segs (Neutropenia) ->Can be caused by viral infections, bone marrow disorders, chemotherapy, or autoimmune diseases. Discuss the stages of cell cycle/mitosis-which stages are longest/shortest The cell cycle is a series of events that cells go through to grow and divide. It consists of two main phases: Interphase (Longest Phase) – Preparation for division Mitosis (Shortest Phase) – Actual cell division Stages of the Cell Cycle Interphase (90% of the Cell Cycle – Longest Phase) Interphase is the period of cell growth and DNA replication. It has three subphases: G1 Phase (Gap 1) The cell grows, produces proteins, and prepares for DNA replication. Longest variable phase; some cells may stay here indefinitely (e.g., neurons in G0 phase). S Phase (Synthesis) DNA replication occurs, ensuring each daughter cell gets a complete genome. Takes about 6-8 hours in human cells. G2 Phase (Gap 2) The cell prepares for mitosis by producing proteins and organelles. Shorter than G1 but still significant in length. Mitosis: Prophase, Metaphase, Anaphase, Telophase Know proportional and inversely proportional relationships Direct (Proportional) Relationship When two quantities increase or decrease together at a constant rate, they are directly proportional. Inversely Proportional When one variable increases, the other decreases proportionally. Know relationship between molecular weight and rate of diffusion The rate of diffusion of a substance is inversely proportional to the square root of its molecular weight. Lighter molecules diffuse faster Heavier molecules diffuse slower due to greater mass. Know relationship between filtration rate and pressure of fluid or weight of fluid Filtration rate is directly proportional to the pressure or weight of the fluid driving the filtration process. Higher pressure → Higher filtration rate Lower pressure → Lower filtration rate Know why men and women blood values are different The differences in blood values between men and women are due to biological, hormonal, and physiological factors
Updated 228d ago
flashcards Flashcards (8)
CT4-LECTURE 1- JAN 2025 OBJECTIVES Developmental Anatomy (Embryology): • Outline the stages of human growth and development, focusing on dental anatomy and root morphology. • Correlate developmental processes with hard and soft tissue formation in the oral cavity. Microscopic Anatomy: • Classify cells (cytology) and tissues (histology) based on their structure and specialization. • Evaluate the role of microscopic structures in maintaining oral health. GROSS Anatomy • Identify anatomical landmarks of the oral head and neck, including the TMJ, circulatory system, glands, and nervous system. • Describe the structures visible to the naked eye and their clinical relevance. Physiology: • Explain the functions of body systems and their integration in oral health. • Analyze the physiological processes affecting the oral cavity. 1/16/2025 3 Mitosis Meiosis One cell division Two cell division Produces two daughter cells Produces Four daughter cells Produces diploid cells Produces haploid cells Daughter cells are genetically identical Daughter cells are non- identical Produces body cells Produces sex cells • Mitosis and meiosis are both types of cell division. • Mitosis is how new body cells are produced, whereas meiosis is used to produce gametes (i.e. sperm and egg cells). first week Spermatozoa + Oocyte = Zygote (12-24hrs.) Cell division via mitosis = Cleavage 1st solid ball called Morulla Inside Morulla secretion of fluids becomes blastocyte (5days) Blastocyte has 2 regeions Trophoblast(peripheral cells) & Embryoblast layer(inner mass) CLINICAL CONSIDERATIONS FOR PREIMPLANTATION PERIOD •If any disturbances occur in meiosis during fertilization, major congenital malformations result from the chromosomal abnormality in around 10% of cases. •A syndrome is a group of specific signs and symptoms. PREIMPLANTATION PERIOD • After a week of cleavage, the blastocyst consists of a layer of peripheral cells, the trophoblast layer, and a small inner mass of embryonic cells or embryoblast layer. • The trophoblast layer later gives rise to important prenatal support tissue while the embryoblast layer later gives rise to the embryo. SECOND WEEK • A bilaminar embryonic disc • The superior epiblast layer is composed of high columnar cells. • The inferior hypoblast layer is composed of small cuboidal cells. THIRD WEEK • Primitive streak (rod shaped thickening) forms a bilateral symmetry within the bilaminar embryonic disc. • Some cells from the epiblast layer move or migrate toward the hypoblast layer only in the area of the primitive streak and become • Mesoderm, an embryonic connective tissue, and embryonic endoderm. END OF THIRD WEEK • With three layers present, the bilaminar disc has thickened into a trilaminar embryonic disc. • The epiblast layer is now considered ectoderm. • 3 germ layers • Ectoderm-becomes skin, nervous system, and neural crest cells. • Mesoderm-Becomes muscles, bones, blood, and connective tissues. • Endoderm-Forms internal organs like the digestive and respiratory systems. 1/16/2025 10 Neural Crest Cells & Mesenchymal Transition(dental tissue) • Neural crest cells are derived from the ectoderm during neurulation (around weeks 3-4). • NCC migrate and undergo epithelial-to-mesenchymal transition (EMT), becoming highly migratory mesenchymal cells. • They contribute to the formation of facial bones, cartilage, peripheral nerves, and parts of the heart. 1/16/2025 11 Embryonic Period: Physiological Process(changes in structure &function) • INDUCE, PROLIFERATE, DIFFERENTIATE AND MORPH, DON’T WAIT! MATURE AND GROW, IT’S YOUR FATE!" 1. Induction The process where one group of cells influences another to differentiate into a specific tissue or organ. 2. Proliferation Rapid cell division, increasing the number of cells. 3. Differentiation(Cyto, Histo, Morpho) Cells specialize to perform specific functions. 4. Morphogenesis The development of the overall shape and structure of tissues and organs. 5. Maturation The final stage where tissues and organs reach their fully functional form. 1/16/2025 12 Facial Development  The facial development that starts in the fourth week of the embryonic period will be completed later in the twelfth week within the fetal period.  At the fourth week, the developing brain, face, and heart are noted. 1/16/2025 13 • All three embryonic layers are involved in facial development: the ectoderm, mesoderm, and endoderm. • The upper part of the face is derived from the frontonasal process, the midface from the maxillary processes, and the lower from the mandibular processes. Early development of the face is also dominated by the proliferation and migration of ectomesenchyme, derived from neural crest cells (NCCs). Facial Development 1/16/2025 14 Stomodeum and Oral Cavity Formation With this disintegration of the membrane, the primitive mouth is increased in depth and enlarges in width across the surface of the midface. Nose and Paranasal Sinus Formation Apparatus Formation  First branchial/ pharyngeal arch also known as the mandibular arch and its associated tissue, includes Meckel cartilage.  Supplied by Trigeminal nerves Apparatus Formation  Second branchial/pharyngeal arch, which is also known as the hyoid arch, is cartilage like that of the mandibular arch, Reichert cartilage. Apparatus Formation  Third branchial/ pharyngeal arch  Has an unnamed cartilage associa ted with it. This cartilage will be responsible for forming parts of the hyoid bone. Apparatus Formation  Both the fourth and the sixth branchial /pharyngeal arch also have unnamed cartilage associated with them, they fuse and form most of the laryngeal cartilages. 1/16/2025 20 TOOTH DEVELOPMENT: INITIATION STAGE Stages of Tooth Development: I Bought Candy Bars After Midnight." I → Initiation Bought → Bud Candy → Cap Bars → Bell After → Apposition Midnight → Maturation 1/16/2025 23 1. Initiation Stage (Week 6-7): • Dental placodes form as localized thickenings of oral ectoderm. • Interaction with neural crest cells induces the formation of the tooth germ. 2. Bud Stage (Week 8): • The enamel organ invaginates into the underlying mesenchyme, creating a tooth bud. 3. Cap Stage (Week 9-10): • The enamel organ forms a cap-like structure over the dental papilla. 4. Bell Stage (Week 11-12): • Cells differentiate into ameloblasts (enamel-forming cells) and odontoblasts (dentin-forming cells). 5. Apposition and Maturation: • Enamel, dentin, and cementum are laid down and mineralized. 1/16/2025 25 • Dental Epithelium → Enamel Organ Enamel organ arises from the dental epithelium and forms ameloblasts, the cells responsible for producing enamel, the hardest substance in the body. Dental Mesenchyme → Dental Papilla Dental papilla forms from the mesenchyme and gives rise to: • Dentin -Odontoblasts: Cells that produce dentin (the layer beneath enamel). • Pulp: The soft, living core of the tooth, containing nerves and blood vessels. • Root Dentin: The dentin in the root of the tooth. Dental Follicle • Surrounds the developing tooth and forms: • Cementum: A calcified tissue covering the root of the tooth, anchoring it to the jaw. • Periodontal Ligament: Connective tissue fibers that hold the tooth in its socket and absorb chewing forces. Teeth w e a r c a n b e t r e a t e d A t t r i t i o n Abrasion Abfraction E r o s i o n Hunter-Schreger bands (HSB). • Hunter-Schreger bands (HSB): • Dark and light bands due to curvature or bends of the rods. • increasing the enamel’s strength. • Near the cusps or incisal ridges, where the enamel is the thickest Celiac Disease ˜ Dental enamel problems stemming from celiac disease involve permanent dentition and include tooth discoloration—white, yellow, or brown spots on the teeth—poor enamel formation, pitting or banding of teeth, and mottled or translucent-looking teeth. ˜ The imperfections are symmetrical and often appear on the incisors and molars. ˜ Tooth defects that result from celiac disease may resemble those caused by too much fluoride or a maternal or early childhood illness 1/16/2025 29 ROOT DEVELOPMENT  The process of root development takes place long after the crown is completely shaped, and the tooth is starting to erupt into the oral cavity.  The structure responsible for root development is the cervical loop.  The cervical loop is the most cervical part of the enamel organ, a bilayer rim that consists of only inner enamel epithelium (IEE) and outer enamel epithelium (OEE). ROOT DEVELOPMENT  To form the root region, the cervical loop begins to grow deeper into the surrounding ectomesenchyme of the dental sac, elongating and moving away from the newly completed crown area to enclose more of the dental papilla tissue, forming the Hertwig epithelial root sheath (HERS). Thus, HERS will determine if the root will be curved or straight, short or long as well as single or multiple. 1/16/2025 33 • Cervical Loop Formation ▪ The cervical loop, located at the junction of the enamel organ and the crown, elongates to form Hertwig’s Epithelial Root Sheath (HERS). ▪ HERS determines the shape, length, and number of roots. • Root Dentin Formation ▪ Inner cells of HERS induce adjacent dental papilla cells to differentiate into odontoblasts, which form root dentin. ▪ Once dentin is deposited, HERS disintegrates. • Epithelial Rests of Malassez ▪ After HERS disintegrates, remnants form clusters called epithelial rests of Malassez in the periodontal ligament. ▪ These remnants can sometimes form cysts later in life. PRIMARY DENTITION PROPERTIES  The actual dates are not as important as the eruption sequence, because there can be a great deal of variation in the actual dates of eruption.  However, the sequence tends to be uniform. Enamel Histology • Enamel tufts: Hypomineralized, Located at the dentino-enamel junction and filled with organic material. Forms between groups of enamel rods at the dentino-enamel junction. • Enamel lamellae are partially mineralized vertical sheets of enamel matrix that extend from the DEJ near the tooth’s cervix to the outer occlusal surface. Transverse section of enamel showing enamel tufts (white arrow) and enamel lamella (black arrow). Dentin Matrix Formation DENTINOGENESIS LPROCESS o$ CREATING DENTIN PRIMARY TEETH _ 14th WEEK of FETAL DEVELOPMENT PERMANENT TEETH L 3 MONTHS AFTER -PROCESS HAPPENS SLOWLY PERFORMED by ODONTOBLASTS —OUTSIDE INWARDS - BEGINS with MANTLE DENTIN ODONTOBLASTS -PREDENTIN -SOFT ORGANIC MATRIX -PROTEINS FIBROBLASTS -KORFF'S FIBERS -THICK COLLAGEN FIBERS -FRAMEWORK of DENTINOGENESIS 1/16/2025 39 Principal Fibers Protect, Gingival Fibers Guard." •Principal → Protection and anchorage of the tooth. •Gingival → Guard and stabilize gingiva. 1/16/2025 40 Principle Fibers "All Hungry Octopuses Appreciate Ice cream!" •All → Alveolar Crest •Hungry → Horizontal •Octopuses → Oblique •Appreciate → Apical •Ice cream → Interradicular 1/16/2025 41 Gingival Fiber : "Dentists Always Care Deeply for Teeth!" •Dentogingival •Alveologingival •Circular •Dentoperiosteal •Transseptal 1/16/2025 42 Primary (Deciduous) Teeth Eruption "Children Like Fruit Candy More" •C → Central Incisors •L → Lateral Incisors •F → First Molars •C → Canines •M → Second Molars CELL ORGANELLES SKIN ANATOMY COME, LET'S GET SOME BREAD" C ORNEUM (OUTER), L UCIDUM, G RANULOSUM, S PINOSUM, B ASALE. • Corneum - tough and protective. • Lucidum - clear layer (found only in thick skin like palms/soles). • Granulosum - cells with granules for keratinization. • Spinosum - "spiny" cells, providing strength and flexibility. • Basale - base layer where cell division happens. 1/16/2025 45 1/16/2025 46 Tooth Designation ∙ Commonly used in orthodontics, is the Palmer Notation Method, also known as the Military Tooth Numbering System. ∙ In this system, the teeth are designated from each other with a right-angle symbol indicating the quadrants and arch, with the tooth number placed inside. 1/16/2025 47 Mixed Dentition Period ∙ The mixed dentition period follows the primary dentition period. ∙ This period occurs between approximately 6 and 12 years of age. ∙ Both primary and permanent teeth are present during this transitional stage. ∙ The final dentition period is the permanent dentition period. ∙ This period begins with shedding of the last primary tooth. 1/16/2025 48 General Dental Terms •Each dental arch can be further divided into two quadrants, with four quadrants in the entire oral cavity. • The correct sequence of words when describing an individual tooth using a D-A-Q-T System is based on the tooth within its quadrant: D for dentition, A for arch, Q for quadrant, and T for tooth type. • Sextants: three parts according to the relationship to the midline: right posterior sextant, anterior sextant, and left posterior sextant. 1/16/2025 49 Root Axis Line (RAL) ∙ Root axis line (RAL), which is an imaginary line representing the long axis of a tooth, drawn in a way to bisect the root (and thus the crown) in the cervical area into two halves. 1/16/2025 50 Restorations: Biologic Width ∙ Biologic width is the distance established by the junctional epithelium and lamina propria attachment to the root surface of a tooth. ∙ This distance is important to consider when fabricating dental restorations, because they must respect the natural architecture of the gingival attachment if harmful consequences are to be avoided. ∙ Assessment for biologic width can be made clinically by measuring the distance between the bone and the restoration margin using a periodontal probe. 1/16/2025 51 PRIMARY DENTITION 1/16/2025 52 1/16/2025 53 Eruption 1/16/2025 54 1/16/2025 55 1/16/2025 56 Differences-(Enamel depth/pulp) 1/16/2025 57 Differences: Roots 1/16/2025 58 Importance of Primary teeth - PRIMATE Space 1/16/2025 59 Leeway Space 1/16/2025 Primary Occlusion 60 •Majority of children have Mesial step between distal of Primary 2nd molars. Mandibular 2nd molars are situated mesially than maxillary. •A smaller but still large group of children exhibit a flush terminal plane. The distal surfaces of the primary 2nd molars are even with each other. •A still smaller minority have a distal step. The mandibular 2nd molars are situated more distally than their maxillary counterparts. Thus, they form a distal step. 1/16/2025 Anatomy of Primary teeth 61 Incisors: resemble the outline of permanent counterpart except Primary do not have mamelons on the incisal ridge and there are no pits on the lingual surface. 1/16/2025 Primary Canines 62 Canines- resemble the outline of their permanent counterparts. The maxillary canine has a sharp cusp and appears especially wide and short. Maxillary Central and Lateral Incisors Central Incisors: • Larger overall; they are the widest teeth mesiodistally in the anterior maxillary arch. • Crown is more symmetrical and fan (mesiodistally wider compared to incisocervical length). • Lingual fossa is less pronounced. • Cingulum is well-developed and centered. • Root is shorter and more conical, with a blunt apex. • Rarely exhibit significant variation. Lateral Incisors: • Smaller and narrower mesiodistally than the central incisors. • Crown is less symmetrical and more rounded. • Lingual fossa is deeper, with more pronounced marginal ridges. • Cingulum is narrower and often slightly off-center to the distal. • Root is longer and thinner, with a more pointed apex. • Frequently display developmental variations (e.g., peg-shaped lateral incisors, congenitally missing). 1/16/2025 66 1/16/2025 67 1/16/2025 68 1/16/2025 69 CLASSIC TRAITS ➢ From the occlusal view, molar crowns taper from the buccal to the lingual EXCEPT for maxillary 1st molars. ➢ From the occlusal view, molar crowns taper distally; this allows more of the occlusal surface to be visible from the distal aspect than the mesial. ➢Maxillary molars have 3 roots: MB, DB, and lingual (palatal). The lingual root is usually the longest and the DB is the shortest. ➢ Mandibular molars have 2 roots: a long mesial root and a slightly shorter distal root. ➢ The root furcation on mandibular molars is close to the cervical line, making the root trunk shorter than on the maxillary molars. MAJOR AND MINOR CUSPS ➢In general, each cusp is formed from its own lobe. ➢Major cusps are large and well developed. ➢Minor cusps are less developed and have smaller proportions. They are less functional than the major cusps and may not always be present. ➢Supplementary cusp is very small and completely afunctional. They are rarely present. 1/16/2025 72 ➢First molars are the most highly developed and largest of the molars and more likely to have major, minor and supplementary cusps. ➢Both the 1st and 2nd maxillary molars have 4 major cusps but only 2 are visible from the buccal view. ➢The longest of the 4 major cusps are the ML, followed by the MB, DB, and the shortest DL (if present). 1/16/2025 73 • Molars (general: crowns larger, squarer, bear more cusps than any other tooth class, have multiple roots, 3rd molars sometimes mistaken for premolars) • Generally speaking, the maxilla molars go from largest to smallest (1st molar to 3rd molar) in size and morphology. The crowns generally have 4 cusps. • The 1st molar has three roots (two buccal and one lingual, which when seen from the buccal position the lingual root comes into view in the middle of the two buccal roots). The occlusal surface is described as a rhomboid in shape with 4 distinctive cusps. • Oblique ridge max molars only and transverse ridge one on max 2 on mandibular. • The 2nd molar has three roots but the two buccal roots are nearly parallel with each other and is described as heart shape in the occlusal view. • The 3rd molar has three roots present but the two buccal roots are often fused, and the outline of the occlusal surface is also described as a heart shape. The 3rd molar also shows greater developmental variation than either the 1st or • 3rd molars are often the tooth that is congenitally missing. All roots of the molars angle distally with respect to the major crown axes (White & Folkens 2005: 152). 1/16/2025 74 1/16/2025 75 Joint Movement ˜ Two basic types of movement of the mandible are performed by the TMJ and its associated muscles of mastication: ˜ a gliding movement and ˜ a rotational movement. 1/16/2025 76 • The muscles of mastication include the • Temporalis, • And Masseter, • Pterygoid muscles, medial and lateral. • These muscles are involved in mastication using these two movements. 1/16/2025 77 1/16/2025 78 TMD: Acute Episode • Trismus or the inability to normally open the mouth. • When the patient tries to close and elevate the mandible, the condylar heads cannot move posteriorly because both the bony relationships prevent this, and the muscles have become spastic. 1/16/2025 79 Overjet • Overjet is measured in millimeters with the tip of a periodontal probe, once a patient is in CO. • The probe is placed at 90°or at a right angle to the labial surface of a mandibular incisor at the base of the incisal ridge of a maxillary incisor. 1/16/2025 80 • Overbite is measured in millimeters with the tip of a periodontal probe after a patient is placed in CO. • The probe is placed on the incisal edge of the maxillary incisor at 90º or at a right angle to the mandibular incisor. • When the reverse is the case and the mandibular arch and its incisors extends beyond the maxillary arch and its incisors, it is causes an underbite. 1/16/2025 81 Lymph Nodes • The lymph flows (arrows) into the lymph node through many afferent vessels. (A is first comes in) • On one side of the node is a depression, or hilus, where the lymph through fewer vessels, or even a single efferent vessel. (E is Exit) • Primary or Secondary. • Region drains into primary nodes. • Primary nodes, in turn, drain into secondary nodes (or central nodes). Lymphatics: General Drainage pattern of body Right jugular trunk Left jugular trunk Enters venous system near junction of left subclavian vein and left internal jugular Thoracic duct Left side of head, neck, thorax, entire abdomen, pelvis, lower extremities Enters venous system near junction of right subclavian vein and right internal jugular Right side of head, neck, thorax *Lymphatic vessels are small and directly drain tissues and connect lymph nodes. *Lymphatic ducts are much larger, receive lymph from many lymphatic vessels, and drain into the venous system. 1/16/2025 83 Superficial Lymph Nodes of the Head (five categories) 1. Facial; lie along facial vein. 2 Superficial Parotid; superficial to parotid gland. 3. Anterior Auricular; anterior to external auditory meatus. 4. Posterior Auricular; posterior to external auditory meatus. 5. Occipital; lie in the occipital region. *Tissue drainage: buccal mucosa, skin of zygomatic and infraorbital regions, scalp, external ear, lacrimal gland Deep Lymph Nodes of Head (two categories) 1. Deep Parotid; lie deep in the parotid gland, superficial to the masseter muscle 2. Retropharyngeal; posterior to the pharynx at the level of the atlas (first cervical vertebrae). *Tissue drainage: parotid gland, paranasal sinuses, hard and soft palate, middle ear Superficial Cervical Lymph Nodes (4 categories) 1. Submental; inferior to the chin in the submental space. 2. Submandibular; along the inferior border of the mandible, superficial to the submandibular salivary gland 3. External Jugular; along the external jugular vein, superficial to the sternocleidomastoid muscle. 4. Anterior Jugular; along the anterior jugular vein, anterior to the sternocleidomastoid muscle. Tissue drainage: 1.Submental and submandibular; teeth and related tissues, apex and body of tongue, anterior hard palate, floor of mouth, lips, chin, sub- mandibular and sublingual glands, cheeks. 2. External and anterior jugular; superficial tissues in the anterior and posterior triangles. Deep Cervical Lymph Nodes (2 categories) 1. Superior Deep Cervical; lie along internal jugular vein, superior to the omohyoid muscle. *Jugulo-digastric- becomes enlarged when a palatine tonsil or the pharynx is involved in infection. 2. Inferior Deep Cervical; lie along internal jugular vein, inferior to the omohyoid muscle. *Jugulo-omohyoid-drains the submental region and base of the tongue. Additional Deep Cervical Nodes 1. Accessory; lie along accessory nerve 2. Subclavicular; lie along clavicle. *Tissue drainage: mostly secondary nodes 1/16/2025 88 Sequence of lymph nodes draining various tissues Most of face, scalp, ear, orbit, sinuses, nasal cavities Most maxillary and mandibular teeth and associated tissues, apex and body of tongue, floor of mouth, sublingual and submandibular glands, lips Maxillary third molars and associated tissues, base of tongue, pharynx, tonsils Tissue Primary nodes Secondary nodes Submental and submandibular nodes Facial, anterior auricular, retroauricular, occipital superficial and deep parotid, and retropharyngeal nodes Submandibular, deep cervical nodes Retropharyngeal, deep cervical nodes Neck and cervical viscera Superficial and deep cervical nodes Right jugular trunk Right subclavian vein Left jugular trunk Left subclavian vein Thoracic duct Endocrine-secrete substance into blood, examples-adrenal gland pituitary gland, thyroid gland Exocrine-secretes substance through a duct leading outside the body (digestive tract, skin). Examples- sweat glands, salivary glands, mucous glands, pancreas Where are the salivary ducts located intraorally? Parotid (Stensen) duct opening > Parotid Papilla. Submandibular (Wharton) duct opening Sublingual Caruncle. Plica Sublingualis Sublingual Caruncle Parotid Papilla Sublingual duct opening - Via Duct of Bartholin → Sublingual Caruncle. OR Via smaller Ducts of Rivinus > Plica Sublingualis. Thyroid and Parathyroid glands (endocrine) Thyroid: 1.Located inferior to the larynx along the sides of the trachea. 2. Has 2 lobes, connected by an isthmus. 3. Secrets thyroxin which influences metabolic rate Parathyroid: 1. Four small glands located on the posterior aspect of the thyroid gland. 2. Secrete parathyroid hormone, which regulates calcium and phosphate levels. Thymus 1. Located in the thorax and anterior region of the base of the neck, deep to the sternum and sternohyoid and sternothyroid muscles. 2. Involved in the maturation of T-cell lymphocytes 3. Shrinks in size with age Teeth and Periodontium Commonly Involved in Clinical Presentations of Abscesses and Fistulae 1. Abscess in maxillary vestibule or palate, 2. Penetration of nasal floor 3. Abscess in nasolabial skin region 4. Penetration into maxillary sinus 5. Abscess in buccal skin region 6. Abscess in mandibular vestibule 7. Abscess in submental skin region 8. Abscess in sublingual region → Any maxillary tooth (except maxillary canines for palate) • Maxillary central incisors → Maxillary canine → Maxillary molars • Maxillary or mandibular molars → Any mandibular tooth • Mandibular incisors → Mandibular molars with short roots superior to mylohyoid Teeth/Periodontium and Spaces Possibly Involved With Various Clinical Presentations of Cellulitus Location Space Involved Teeth/Periodontium Involved Infraorbital region Zygomatic region Buccal region Buccal space Maxillary premolars, and maxillary and mandibular molars Submental region Submental space Anterior mandibular teeth Submandibular region (unilateral) Submandibular space Posterior mandibular teeth Submandibular region (bilateral) Submental, sublingual Submandibular spaces Spread of mandibular dental infection Lateral cervical region Parapharyngeal space Spread of mandibular dental infection 4 major routes 1. Spread to the paranasal sinuses 2. Spread by the vascular system 3. Spread by the Lymphatic system 4. Spread by spaces Bacteria can spread through the blood from infected dental tissues to other areas. (1) An infected thrombus (blood clot) can travel as an embolus and spread infection. (2) Transient bacteremia (presence of bacteria in the blood) can occur during dental treatment. For example, a needle advanced too far during an attempt at PSA block can penetrate the pterygoid venous plexus after being inserted through infected tissue (needle track contamination). (3) The pterygoid venous plexus drains the dental tissues and communicates with the cavernous sinus via the inferior ophthalmic vein. (4) Infections in dental tissues can initiate an inflammatory response, which can result in thrombus formation, blood stasis, and increased extravascular pressure. (5) Veins in the head do not have valves, so backflow of blood carrying pathogens into the cavernous sinus can occur. Cranial Nerve Names & Function Names: "Only One Of The Two Athletes Felt Very Good, Victorious, And Healthy" Function: "Some Say Marry Money, But My Brother Says Big Brains Matter Most" 1. Only (Some) = Olfactory (S) 2. One (Say) = Optic (S) 3. Of (Marry) = Oculomotor (M) 4. The (Money) = Trochlear (M) 5. Two (But) = Trigeminal (B) 6. Athletes (My) = Abducens (M) 7. Felt (Brother) = Facial (B) 8. Very (Says) = Vestibulocochlear (S) 9. Good (Big) = Glossopharyngeal (B) 10. Victorious (Brains) = Vagus (B) 11. And (Matter) = Accessory (M) 12. Healthy (Most) = Hypoglossal (M) Blood Branching of Carotid Arteries from Aorta Common Carotid Arteries To upper limb Subclavian artery Subclavian artery Brachiocephalic trunk Aortic arch From heart To thorax, abdomen, legs Blood Flow LAB RAT LEFT ATRIUM=BICUSPID RIGHT ATRIUM= TRICUSPID Right ABC'S THE AORTIC ARCH GIVES RISE TO -BRACIOCHEPHALIC TRUNK COMMON COROTID ARTERY SUBCLAVIAN ARTERY Left: carotid & subclavian LUNG BAGHT PULMONARY ARTERY PILNONARY WEIN TRICUSPID VALVE L E F T LUNG S U P. VENA CAVA AORTIC ARCH LEFT PULMONARY ARTERY RIGHT ATRIUM PALMONART PULMONARY ARTERY LEFT ATRIUM PULMONARY VINN PELNONARY WEIN LEFT VENTRICLE RIGHT VENTRICLE B L O O D FLOW THROUGH THE HEART MITRAL VALVE I N 2 MINUTES INF. VENA CAVA Foramina, Canals, etc. Traversed by Various Blood Vessels Vertebral artery- transverse foramina in cervical vertebrae, foramen magnum Internal carotid artery-carotid canal, foramen lacerum, groove for the internal carotid artery Maxillary artery-terminates in pterygoid fossa Posterior superior alveolar artery-posterior superior alveolar foramina Infraorbital artery-inferior orbital fissure, infraorbital groove, infraorbital canal, infraorbital foramen Sphenopalatine artery-sphenopalatine foramen, incisive canal, incisive foramen Descending palatine artery-divides into greater and lesser palatine arteries which traverse same named foramina Inferior alveolar artery-mandibular foramen, mandibular canal Mental artery-mental foramen Mylohyoid artery-mylohyoid groove Ophthalmic artery-optic canal Anterior and posterior ethmoid arteries-anterior and posterior ethmoid foramina Middle menningeal artery-foramen spinosum Internal jugular-jugular foramen EXTERNAL CAROTID ARTERY LINGUAL- → SUPRAHYOID → DORSAL LINGUAL → SUBLINGUAL → DEEP LINGUAL - TONGUE - SOFT PALATE - SUBLINGUAL SALIVARY GLAND - MUSCLES ATTACHED to HYOID ARTERIAL SUPPLY: FACIAL- - MAXILLARY (3 PARTS) → ASCENDING MANDIBULAR PART: PALATINE → INFERIOR ALVEOLAR → TONSILAR - LOWER TEETH - CHEEK → SUBMENTAL - MYLOHYOID → GLANDULAR BRANCHES MUSCULAR PART: → SUPERIOR LABIAL → MASSETERIC → - MASSETER → INFERIOR LABIAL → DEEP TEMPORAL → - TEMPORALIS PTERYGOPALATINE PART: - SOFT PALATE - PALATINE TONSIL - ROOT of TONGUE - SUBMANDIBULAR & SUBLINGUAL SALIVARY GLANDS - LIPS → DESCENDING - HARD PALATE PALATINE - SOFT PALATE → POSTERIOR SUPERIOR ALVEOLAR - PALATINE TONSIL - UPPER PREMOLAR & M O L A R S → INFRAORBITAL → - UPPER TEETH It gives off six branches before it divides into two terminating branches. They are in ascending order: • superior thyroid, • ascending pharyngeal, • lingual, • facial, • occipital, and • posterior auricular. The two terminating branches are the • maxillary and • superficial temporal arteries. Lingual artery supplies the tongue, Floor of the mouth and suprahyoid muscles. FACIAL ARTERY 1) The facial artery runs anteriorly and superiorly near the labial commissure and along the lateral side of the naris of the nose. 2) The facial artery terminates at the medial canthus of the eye. 3) Supplies the face in the oral, buccal, zygomatic, nasal, infraorbital, and orbital regions. o Cervical – Ascending Palatine, submental and tonsillar o Facial branches – Glandular (submandibular), Angular, Superior Labial & Inferior labial *Face, palate, tonsils, submandibular, stylohyoid, digastric muscles Maxillary artery Acessory middle meningeal artery Masseteric artery Middle meningeal artery Deep temporal arteries Pharyngeal artery - Artery of pterygoid canal Sphenopalatine artery Infraorbital artery Anterior superior alveolar artery Deep auricular artery Anterior tympanic artery Inferior alveolar artery Mylohyoid artery Posterior superior alveolar artery Greater palatine artery Lesser palatine arteries Buccal artery Lingual branch Incisive branches Mental artery • 1st Mandibular part • 5 branches → Retromandibular foramen • 2nd Pterygoid part • 5 branches → Infratemporal foramen • 3rd Pterygopalatine part • 6 branches → Pterygopalatine foramen Epicranial Surprise Orbicularis oculi Closing eyelid and squinting Corrugator supercilii Frowning Orbicularis oris Closing and pursing lips as well as pouting and grimacing Buccinator Compresses the cheeks during chewing Risorius Stretching lips Levator labii superiori s Raising upper lip Levator labii superiori s alaeque nasi Raising upper lip and dilating nares with sneer Zygomaticus major Smiling Zygomaticus minor Raising upper lip to assist in smiling Levator anguli oris Smiling Depressor anguli oris Frowning Depressor labii inferi oris Lowering lower lip Mentalis Raising chin protruding lower lip Platysma Raising neck skin and grimacing Class I Malocclusion •The MB cusp of the maxillary first molar occludes with the MB groove of the mandibular first molar. Facial profile as described by many clinicians with the older term mesognathic. Class II Malocclusion Class II malocclusion (distoclusion) MB cusp of the maxillary first molar occluding (by more than the width of a premolar) mesial to the MB groove of the mandibular first molar. • The older term for describing the facial profile in Class II, division I, is retrognathic. Class II Malocclusion Division I Division II • Based on the • Position of the anterior teeth. • Shape of the palate • Resulting facial profile. Class II Malocclusion Division I maxillary incisors protrude facially from the mandibular incisors causing a severe over bite (or deep bite). Upper incisors are tilted outwards, creating significant overjet. Division II Protrusive maxillary incisors, the maxillary central incisors are either upright or retruded. Upper incisors are labially inclined. Class III Malocclusion The MB cusp of the maxillary first molar occludes (by more than the width of a premolar) distal to the MB groove of the mandibular first molar. • The older term that describes the facial profile with a Class III malocclusion is prognathic.
Updated 287d ago
flashcards Flashcards (7)
Chapter 19 Viruses And Prokaryotes 19.1 Studying Viruses And Prokaryotes I. Infection Causing Agents (Pathogen) A.Virus 1. = Infectious Particle Made Of Dna/Rna Surrounded By Protein Coat 2. Not Considered Living Organisms A) Don’T Reproduce On Own & Not Made Of Cells B.Bacteria 1. = 1 Celled Microorganism That Can Cause Infection 2. Prokaryote C.Viroid 1. = Infectious Particle That Causes Disease In Plants 2. Made Of Single Strand Of Rna 3. Passed Thru Seeds & Pollen 4. Can Stunt Plant Growth D.Prion 1. = Infectious Particle Made Of Proteins 2. Cause Other Proteins To Unfold/Fold Incorrectly A) Protein Shape Very Important 3. No Genetic Material 4. Can Cause Several Brain Diseases A) Mad-Cow Disease B) Creutzfeld-Jakob Disease C) Can Go For Long Period Of Time W/O Effect - Once Symptoms Start They Continue Fast & Always Fatal Viral Structure And Reproduction - 19.2 I. Structure Of Viruses (Virion) A.Capsid = Protein Shell 1. Surrounds Genetic Material 2. Various Shapes 3. May Be Surrounded By Lipid Envelope = Protective Outer Coat A) May Have Sugar & Protein Spikes B) Helps Attach To Host C) Can Be Used For Identification 4. Capsid, Genetic Material (Dna/Rna) & Few Enzymes Only Things That Makeup Virus B.Structure & Shape Important To How They Work 1. Very Specific To What They Can Infect 2. Has To Fit Into Protein Receptor On Cell Membrane 3. Shapes A) Enveloped (Flu) B) Helical (Rabies) C) Polyhedral (Foot And Mouth) D) Protein Spikes Are What Immune System Targets 4. Genetic Material A) Can Have Dna Or Rna - Not Both B) Can Be Single-Stranded, Double-Stranded, Linear, Circular, Or Segmented C.Bacteriophage (Phage) 1. = Virus That Infects Bacteria 2. Uses Tail & Spikes To Attach To Bacteria A) Uses Enzymes To Break Thru Membrane B) Inserts Genetic Material W/ Tail Sheath Punching Thru Bacterial Membrane D.Viruses That Infect Eukaryotes 1. Can Enter Cell By Endocytosis 2. If Have Envelope Some Will Fuse W/ Cell Membrane A) Then Release Capsid Into Cytoplasm Of Cell (Hiv Virus) 3. No Matter How Virus Gets In, Once In Cell It Attacks The Nucleus Ii. Virus Replication A.2 General Pathways 1. Lytic Infection (Pathway) A) The Virus Takes Control Of Host’S Dna - Turning On Genes To Copy Viral Genes B) Host Cell Makes Viral Capsid & Enzymes - Which Makes Viral Dna C) Host Cell Makes New Viruses D) Host Cell Bursts Open Releasing New Viruses E) Destroys Host Cell 2. Lysogenic Infection (Pathway) A) Combines Viral Dna Into Host Dna = Prophage (Bacteriophage) Or Provirus (All Other Organisms) B) Prophage/Provirus Copied W/ Host Cell’S Dna Into All Daughter Cells C) Prophage/Provirus Can Remain Dormant In Host Cell Or Eventually Become Triggered (Stress) D) When Triggered Cell Then Enters Lytic Phase E) Ex. Herpes Simplex Virus And Aids
Updated 426d ago
flashcards Flashcards (7)
Chapter 19 Viruses And Prokaryotes 19.1 Studying Viruses And Prokaryotes I. Infection Causing Agents (Pathogen) A.Virus 1. = Infectious Particle Made Of Dna/Rna Surrounded By Protein Coat 2. Not Considered Living Organisms A) Don’T Reproduce On Own & Not Made Of Cells B.Bacteria 1. = 1 Celled Microorganism That Can Cause Infection 2. Prokaryote C.Viroid 1. = Infectious Particle That Causes Disease In Plants 2. Made Of Single Strand Of Rna 3. Passed Thru Seeds & Pollen 4. Can Stunt Plant Growth D.Prion 1. = Infectious Particle Made Of Proteins 2. Cause Other Proteins To Unfold/Fold Incorrectly A) Protein Shape Very Important 3. No Genetic Material 4. Can Cause Several Brain Diseases A) Mad-Cow Disease B) Creutzfeld-Jakob Disease C) Can Go For Long Period Of Time W/O Effect - Once Symptoms Start They Continue Fast & Always Fatal Viral Structure And Reproduction - 19.2 I. Structure Of Viruses (Virion) A.Capsid = Protein Shell 1. Surrounds Genetic Material 2. Various Shapes 3. May Be Surrounded By Lipid Envelope = Protective Outer Coat A) May Have Sugar & Protein Spikes B) Helps Attach To Host C) Can Be Used For Identification 4. Capsid, Genetic Material (Dna/Rna) & Few Enzymes Only Things That Makeup Virus B.Structure & Shape Important To How They Work 1. Very Specific To What They Can Infect 2. Has To Fit Into Protein Receptor On Cell Membrane 3. Shapes A) Enveloped (Flu) B) Helical (Rabies) C) Polyhedral (Foot And Mouth) D) Protein Spikes Are What Immune System Targets 4. Genetic Material A) Can Have Dna Or Rna - Not Both B) Can Be Single-Stranded, Double-Stranded, Linear, Circular, Or Segmented C.Bacteriophage (Phage) 1. = Virus That Infects Bacteria 2. Uses Tail & Spikes To Attach To Bacteria A) Uses Enzymes To Break Thru Membrane B) Inserts Genetic Material W/ Tail Sheath Punching Thru Bacterial Membrane D.Viruses That Infect Eukaryotes 1. Can Enter Cell By Endocytosis 2. If Have Envelope Some Will Fuse W/ Cell Membrane A) Then Release Capsid Into Cytoplasm Of Cell (Hiv Virus) 3. No Matter How Virus Gets In, Once In Cell It Attacks The Nucleus Ii. Virus Replication A.2 General Pathways 1. Lytic Infection (Pathway) A) The Virus Takes Control Of Host’S Dna - Turning On Genes To Copy Viral Genes B) Host Cell Makes Viral Capsid & Enzymes - Which Makes Viral Dna C) Host Cell Makes New Viruses D) Host Cell Bursts Open Releasing New Viruses E) Destroys Host Cell 2. Lysogenic Infection (Pathway) A) Combines Viral Dna Into Host Dna = Prophage (Bacteriophage) Or Provirus (All Other Organisms) B) Prophage/Provirus Copied W/ Host Cell’S Dna Into All Daughter Cells C) Prophage/Provirus Can Remain Dormant In Host Cell Or Eventually Become Triggered (Stress) D) When Triggered Cell Then Enters Lytic Phase E) Ex. Herpes Simplex Virus And Aids
Updated 426d ago
flashcards Flashcards (10)
Cell Division and Reproduction Asexual Reproduction Only 1 parent required for asexual reproduction. Fast and simple process. Results in identical offspring without genetic variation. Examples include binary fission in bacteria. Sexual Reproduction Involves 2 parents contributing to offspring. Offspring genetically different from parents. Slower and more expensive compared to asexual reproduction. Leads to genetic variation, aiding evolution in changing environments. Modes of Reproduction Asexual reproduction involves a single parent producing genetically identical offspring through binary fission. Example: Amoeba divides by binary fission to form daughter cells. Sexual reproduction requires two parents contributing to genetically diverse offspring. Genetic variation in sexual reproduction allows adaptation to environmental changes. Eukaryotic Cell Division Mitosis produces identical daughter cells for asexual reproduction, growth, and repair. Meiosis generates different daughter cells for sexual reproduction and gamete formation. Meiosis results in four unique daughter cells compared to two identical cells in mitosis. Cell Cycle and Mitosis Eukaryotic Cell Division Mitosis results in daughter cells identical to the parent cell. Occurs in asexual reproduction, growth, development, and repair. Meiosis produces daughter cells different from parents for sexual reproduction. Involves the formation of gametes like sperm and egg. Eukaryotic Chromosomes Chromosomes are tightly coiled DNA structures. Human cells (except gametes) typically have 46 chromosomes. Genes are specific DNA sequences on chromosomes. Chromatin, a looser DNA form, condenses into chromosomes before cell division. The Cell Cycle Ordered sequence of events from cell formation to division. Consists of interphase (cell growth and DNA replication) and mitotic phase (DNA and cytoplasmic division). Interphase includes G1 (cell growth), S (DNA duplication), and G2 (preparation for division). Stages of Mitosis Prophase: Chromosomes coil tightly, spindles form. Prometaphase: Nuclear envelope breaks, microtubules attach to chromatids. Metaphase: Chromosomes align at the cell's equator. Anaphase: Sister chromatids separate and move to opposite ends. Telophase: Chromosomes decondense, nuclear envelope reforms. Cytokinesis: Cytoplasm divides, forming two daughter cells. Mitosis and Cell Division Mitotic Spindle Microtubules that separate chromosomes during mitosis. Aids in pulling DNA to opposite ends of the cell. Essential for proper chromosome distribution. Ensures accurate division of genetic material. Mitosis Summary Results in two daughter cells identical to the parent cell. Utilized in asexual reproduction, growth, and repair. Mathematically, chromosome count doubles during S phase and halves after cytokinesis. Ensures genetic stability and continuity in cell populations. Comparing Binary Fission and Mitosis Both processes involve chromosome duplication and cell division. Mechanics and timing differ between bacterial binary fission and eukaryotic mitosis. DNA replication and separation occur simultaneously in binary fission, unlike in mitosis. Mitotic spindle formation is unique to eukaryotic cell division. Cancer and Cell Cycle Cell cycle checkpoints regulate cell division. Disruption of checkpoints, like the G1/S checkpoint, can lead to cancer. Tumors result from uncontrolled cell growth. Benign tumors stay localized, while malignant tumors can metastasize. Eukaryotic Chromosomes and Cell Cycle Chromatin and Chromosomes Chromatin organizes DNA into chromosomes before cell division. Gene: a sequence of nucleotides on a chromosome. Sister chromatids are duplicated chromosomes held by a centromere. The Cell Cycle Phases Interphase: cell growth and DNA replication stages. Mitotic Phase: includes mitosis and cytokinesis for cell division. Mitosis stages: Prophase, Prometaphase, Metaphase, Anaphase, Telophase.
Updated 478d ago
flashcards Flashcards (30)
0.00
studied byStudied by 0 people