Results for "ACET"

Filters

Flashcards

Endocrine System 1. What are hormones and what is their function in the body? Hormones are chemical messengers transported in the bloodstream that stimulate physiological responses in target cells or organs. 2. Types of hormones Endocrine System 1. What are hormones and what is their function in the body? Hormones are chemical messengers transported in the bloodstream that stimulate physiological responses in target cells or organs. 2. Types of hormones based on chemical composition and how they enter target cells: • Steroid hormones: Lipid-soluble, diffuse through cell membrane (e.g., cortisol). • Protein/Peptide hormones: Water-soluble, bind to surface receptors (e.g., insulin). • Biogenic/Monoamines: Derived from amino acids (e.g., T3/T4), may need carriers or membrane receptors. 3. Know all 6 hormones secreted by the anterior pituitary gland and their functions: • TSH: Stimulates thyroid to release T3 and T4. • ACTH: Stimulates adrenal cortex to release cortisol. • GH: Stimulates tissue growth and protein synthesis. • PRL: Stimulates milk production. • FSH: Stimulates egg maturation/sperm production. • LH: Triggers ovulation and testosterone production. 4. What is thymosin? Which gland secretes it? What is its function? Thymosin is secreted by the thymus and helps in the development and maturation of T-cells. 5. Know thyroid gland hormones, the cells that secrete them, and their functions: • T3 & T4 (follicular cells): Increase metabolism and regulate appetite. • Calcitonin (C cells): Lowers blood calcium levels. 6. Know the hormones secreted by the adrenal gland and their specific functions: • Cortex: • Aldosterone: Retains Na⁺, excretes K⁺, raises blood pressure. • Cortisol: Increases glucose, metabolism of fat/protein. • Androgens: Precursor to sex hormones. • Medulla: • Epinephrine/Norepinephrine: Increase heart rate, blood flow, and alertness. 7. Function of glucagon and insulin in maintaining homeostasis: • Insulin (beta cells): Lowers blood glucose. • Glucagon (alpha cells): Raises blood glucose. • Antagonistic: They have opposing effects to balance blood sugar levels. 8. Which cells are involved in spermatogenesis? Where does sperm production occur? • Sertoli (Sustentacular) cells support spermatogenesis. • Leydig (Interstitial) cells produce testosterone. • Occurs in the seminiferous tubules of the testes. 9. Know the hormones secreted by the testes and their functions: • Testosterone: Stimulates male development and sperm production. • Inhibin: Inhibits FSH to regulate sperm production. 10. What causes diabetes insipidus? How is it different from diabetes mellitus? • Diabetes insipidus: ADH deficiency → excessive urination. • Diabetes mellitus: Insulin issues → high blood glucose. 11. Know the 3 “P’s” of diabetes: • Polyuria: Excessive urination. • Polydipsia: Excessive thirst. • Polyphagia: Excessive hunger. 12. How are oxytocin and prolactin different? • Oxytocin: Stimulates uterine contractions and milk letdown. • Prolactin: Stimulates milk production. 13. Name the ovarian hormones and their functions: • Estrogen/Progesterone: Regulate cycle, pregnancy, and secondary sex characteristics. • Inhibin: Inhibits FSH secretion. ⸻ Muscle Physiology 14. Know 3 muscle types, their locations, and function: • Skeletal: Attached to bones; movement; voluntary. • Cardiac: Heart; pumps blood; involuntary. • Smooth: Organs/vessels; propels substances; involuntary. 15. Know the layers surrounding muscle: • Epimysium: Surrounds entire muscle. • Perimysium: Surrounds fascicle (bundle). • Endomysium: Surrounds individual fiber. 16. What is a fascicle? A bundle of muscle fibers. 17. What is a sarcomere? Name its regions: Smallest contractile unit (Z-disc to Z-disc). • Z-band, A-band (dark), I-band (light), H-zone. 18. What are actin and myosin? • Actin: Thin filament. • Myosin: Thick filament that pulls actin during contraction. 19. What is troponin and tropomyosin? • Tropomyosin blocks binding sites on actin. • Troponin binds Ca²⁺ to move tropomyosin and expose sites. 20. What is a motor unit? A motor neuron and all muscle fibers it controls. 21. Role of T-Tubule, SR, Terminal Cisternae: • T-Tubule: Conducts AP into cell. • SR: Stores calcium. • Terminal cisternae: Release calcium. 22. Which neurotransmitter is released at the neuromuscular junction? Acetylcholine (ACh). 23. What role does Ca²⁺ play in muscle physiology? Binds troponin, moves tropomyosin, exposes actin sites. 24. What happens to Ca²⁺ after action potential ends? Reabsorbed into SR by Ca²⁺ ATPase pump. 25. What is the function of ATP in muscle physiology? Powers myosin movement, detachment, and Ca²⁺ reuptake. 26. What is sliding filament theory? Myosin pulls actin filaments → sarcomere shortens → contraction. 27. What are DHP and Ryanodine receptors and their roles? • DHP: Voltage sensor in T-tubule. • Ryanodine: Releases Ca²⁺ from SR. 28. What is the function of AChE? Breaks down ACh to stop stimulation and contraction. 29. Difference between isotonic and isometric contractions: • Isotonic: Muscle changes length (shortens/lengthens). • Isometric: Muscle length stays same; tension builds. ⸻ Respiratory Physiology 30. Difference between conductive and respiratory divisions: • Conductive: Air passageways (nose to bronchioles). • Respiratory: Gas exchange (alveoli). 31. Type I & II alveolar cells and functions: • Type I: Gas exchange. • Type II: Secretes surfactant, repairs alveoli. 32. Dust cells and their functions: Alveolar macrophages that clean up particles/debris. 33. Muscles in relaxed vs. forced respiration: • Relaxed inhale: Diaphragm, external intercostals. • Forced inhale: Accessory neck muscles. • Forced exhale: Internal intercostals, abdominals. 34. What happens to pressure and volume when inhaling/exhaling? • Inhale: Volume ↑, pressure ↓. • Exhale: Volume ↓, pressure ↑. 35. Difference between systemic and pulmonary exchange: • Systemic: Gas exchange at tissues. • Pulmonary: Gas exchange in lungs. 36. What cells are involved in carrying gases? Red blood cells (RBCs). 37. Which enzyme converts CO₂ + H₂O → H₂CO₃? Carbonic anhydrase. 38. What does carbonic acid break into? H⁺ + HCO₃⁻ (bicarbonate ion). 39. What happens in hypoxia (low oxygen)? • ↓O₂, ↑CO₂, ↓pH (acidosis). 40. What happens in hypercapnia (high CO₂)? • ↑CO₂, ↓O₂, ↓pH (acidosis). 41. Receptors for blood pH and their locations: • Central (CSF pH): Medulla oblongata. • Peripheral (O₂, CO₂, pH): Carotid & aortic bodies. 42. CO₂ loading & O₂ unloading at tissues: • CO₂ enters blood → forms HCO₃⁻. • O₂ released to tissues. 43. CO₂ unloading & O₂ loading at alveoli: • CO₂ released from blood to lungs. • O₂ binds to hemoglobin. 44. Brain part for unconscious breathing: Medulla oblongata. 45. Obstructive vs. restrictive disorders + example: • Obstructive: Narrowed airways (asthma). • Restrictive: Reduced lung expansion (fibrosis). 46. Know spirometry volumes (not numbers): • Tidal volume, • Inspiratory/Expiratory reserve volume, • Residual volume, • Vital capacity, • Total lung capacity, • Inspiratory capacity, • Functional residual capacity. 47. Define eupnea, dyspnea, tachypnea, apnea, Kussmaul respiration: • Eupnea: Normal breathing. • Dyspnea: Labored breathing. • Tachypnea: Rapid, shallow breathing. • Apnea: No breathing. • Kussmaul: Deep, rapid (from acidosis Endocrine System 1. What are hormones and what is their function in the body? Hormones are chemical messengers transported in the bloodstream that stimulate physiological responses in target cells or organs. 2. Types of hormones based on chemical composition and how they enter target cells: • Steroid hormones: Lipid-soluble, diffuse through cell membrane (e.g., cortisol). • Protein/Peptide hormones: Water-soluble, bind to surface receptors (e.g., insulin). • Biogenic/Monoamines: Derived from amino acids (e.g., T3/T4), may need carriers or membrane receptors. 3. Know all 6 hormones secreted by the anterior pituitary gland and their functions: • TSH: Stimulates thyroid to release T3 and T4. • ACTH: Stimulates adrenal cortex to release cortisol. • GH: Stimulates tissue growth and protein synthesis. • PRL: Stimulates milk production. • FSH: Stimulates egg maturation/sperm production. • LH: Triggers ovulation and testosterone production. 4. What is thymosin? Which gland secretes it? What is its function? Thymosin is secreted by the thymus and helps in the development and maturation of T-cells. 5. Know thyroid gland hormones, the cells that secrete them, and their functions: • T3 & T4 (follicular cells): Increase metabolism and regulate appetite. • Calcitonin (C cells): Lowers blood calcium levels. 6. Know the hormones secreted by the adrenal gland and their specific functions: • Cortex: • Aldosterone: Retains Na⁺, excretes K⁺, raises blood pressure. • Cortisol: Increases glucose, metabolism of fat/protein. • Androgens: Precursor to sex hormones. • Medulla: • Epinephrine/Norepinephrine: Increase heart rate, blood flow, and alertness. 7. Function of glucagon and insulin in maintaining homeostasis: • Insulin (beta cells): Lowers blood glucose. • Glucagon (alpha cells): Raises blood glucose. • Antagonistic: They have opposing effects to balance blood sugar levels. 8. Which cells are involved in spermatogenesis? Where does sperm production occur? • Sertoli (Sustentacular) cells support spermatogenesis. • Leydig (Interstitial) cells produce testosterone. • Occurs in the seminiferous tubules of the testes. 9. Know the hormones secreted by the testes and their functions: • Testosterone: Stimulates male development and sperm production. • Inhibin: Inhibits FSH to regulate sperm production. 10. What causes diabetes insipidus? How is it different from diabetes mellitus? • Diabetes insipidus: ADH deficiency → excessive urination. • Diabetes mellitus: Insulin issues → high blood glucose. 11. Know the 3 “P’s” of diabetes: • Polyuria: Excessive urination. • Polydipsia: Excessive thirst. • Polyphagia: Excessive hunger. 12. How are oxytocin and prolactin different? • Oxytocin: Stimulates uterine contractions and milk letdown. • Prolactin: Stimulates milk production. 13. Name the ovarian hormones and their functions: • Estrogen/Progesterone: Regulate cycle, pregnancy, and secondary sex characteristics. • Inhibin: Inhibits FSH secretion. ⸻ Muscle Physiology 14. Know 3 muscle types, their locations, and function: • Skeletal: Attached to bones; movement; voluntary. • Cardiac: Heart; pumps blood; involuntary. • Smooth: Organs/vessels; propels substances; involuntary. 15. Know the layers surrounding muscle: • Epimysium: Surrounds entire muscle. • Perimysium: Surrounds fascicle (bundle). • Endomysium: Surrounds individual fiber. 16. What is a fascicle? A bundle of muscle fibers. 17. What is a sarcomere? Name its regions: Smallest contractile unit (Z-disc to Z-disc). • Z-band, A-band (dark), I-band (light), H-zone. 18. What are actin and myosin? • Actin: Thin filament. • Myosin: Thick filament that pulls actin during contraction. 19. What is troponin and tropomyosin? • Tropomyosin blocks binding sites on actin. • Troponin binds Ca²⁺ to move tropomyosin and expose sites. 20. What is a motor unit? A motor neuron and all muscle fibers it controls. 21. Role of T-Tubule, SR, Terminal Cisternae: • T-Tubule: Conducts AP into cell. • SR: Stores calcium. • Terminal cisternae: Release calcium. 22. Which neurotransmitter is released at the neuromuscular junction? Acetylcholine (ACh). 23. What role does Ca²⁺ play in muscle physiology? Binds troponin, moves tropomyosin, exposes actin sites. 24. What happens to Ca²⁺ after action potential ends? Reabsorbed into SR by Ca²⁺ ATPase pump. 25. What is the function of ATP in muscle physiology? Powers myosin movement, detachment, and Ca²⁺ reuptake. 26. What is sliding filament theory? Myosin pulls actin filaments → sarcomere shortens → contraction. 27. What are DHP and Ryanodine receptors and their roles? • DHP: Voltage sensor in T-tubule. • Ryanodine: Releases Ca²⁺ from SR. 28. What is the function of AChE? Breaks down ACh to stop stimulation and contraction. 29. Difference between isotonic and isometric contractions: • Isotonic: Muscle changes length (shortens/lengthens). • Isometric: Muscle length stays same; tension builds. ⸻ Respiratory Physiology 30. Difference between conductive and respiratory divisions: • Conductive: Air passageways (nose to bronchioles). • Respiratory: Gas exchange (alveoli). 31. Type I & II alveolar cells and functions: • Type I: Gas exchange. • Type II: Secretes surfactant, repairs alveoli. 32. Dust cells and their functions: Alveolar macrophages that clean up particles/debris. 33. Muscles in relaxed vs. forced respiration: • Relaxed inhale: Diaphragm, external intercostals. • Forced inhale: Accessory neck muscles. • Forced exhale: Internal intercostals, abdominals. 34. What happens to pressure and volume when inhaling/exhaling? • Inhale: Volume ↑, pressure ↓. • Exhale: Volume ↓, pressure ↑. 35. Difference between systemic and pulmonary exchange: • Systemic: Gas exchange at tissues. • Pulmonary: Gas exchange in lungs. 36. What cells are involved in carrying gases? Red blood cells (RBCs). 37. Which enzyme converts CO₂ + H₂O → H₂CO₃? Carbonic anhydrase. 38. What does carbonic acid break into? H⁺ + HCO₃⁻ (bicarbonate ion). 39. What happens in hypoxia (low oxygen)? • ↓O₂, ↑CO₂, ↓pH (acidosis). 40. What happens in hypercapnia (high CO₂)? • ↑CO₂, ↓O₂, ↓pH (acidosis). 41. Receptors for blood pH and their locations: • Central (CSF pH): Medulla oblongata. • Peripheral (O₂, CO₂, pH): Carotid & aortic bodies. 42. CO₂ loading & O₂ unloading at tissues: • CO₂ enters blood → forms HCO₃⁻. • O₂ released to tissues. 43. CO₂ unloading & O₂ loading at alveoli: • CO₂ released from blood to lungs. • O₂ binds to hemoglobin. 44. Brain part for unconscious breathing: Medulla oblongata. 45. Obstructive vs. restrictive disorders + example: • Obstructive: Narrowed airways (asthma). • Restrictive: Reduced lung expansion (fibrosis). 46. Know spirometry volumes (not numbers): • Tidal volume, • Inspiratory/Expiratory reserve volume, • Residual volume, • Vital capacity, • Total lung capacity, • Inspiratory capacity, • Functional residual capacity. 47. Define eupnea, dyspnea, tachypnea, apnea, Kussmaul respiration: • Eupnea: Normal breathing. • Dyspnea: Labored breathing. • Tachypnea: Rapid, shallow breathing. • Apnea: No breathing. • Kussmaul: Deep, rapid (from acidosis Endocrine System 1. What are hormones and what is their function in the body? Hormones are chemical messengers transported in the bloodstream that stimulate physiological responses in target cells or organs. 2. Types of hormones based on chemical composition and how they enter target cells: • Steroid hormones: Lipid-soluble, diffuse through cell membrane (e.g., cortisol). • Protein/Peptide hormones: Water-soluble, bind to surface receptors (e.g., insulin). • Biogenic/Monoamines: Derived from amino acids (e.g., T3/T4), may need carriers or membrane receptors. 3. Know all 6 hormones secreted by the anterior pituitary gland and their functions: • TSH: Stimulates thyroid to release T3 and T4. • ACTH: Stimulates adrenal cortex to release cortisol. • GH: Stimulates tissue growth and protein synthesis. • PRL: Stimulates milk production. • FSH: Stimulates egg maturation/sperm production. • LH: Triggers ovulation and testosterone production. 4. What is thymosin? Which gland secretes it? What is its function? Thymosin is secreted by the thymus and helps in the development and maturation of T-cells. 5. Know thyroid gland hormones, the cells that secrete them, and their functions: • T3 & T4 (follicular cells): Increase metabolism and regulate appetite. • Calcitonin (C cells): Lowers blood calcium levels. 6. Know the hormones secreted by the adrenal gland and their specific functions: • Cortex: • Aldosterone: Retains Na⁺, excretes K⁺, raises blood pressure. • Cortisol: Increases glucose, metabolism of fat/protein. • Androgens: Precursor to sex hormones. • Medulla: • Epinephrine/Norepinephrine: Increase heart rate, blood flow, and alertness. 7. Function of glucagon and insulin in maintaining homeostasis: • Insulin (beta cells): Lowers blood glucose. • Glucagon (alpha cells): Raises blood glucose. • Antagonistic: They have opposing effects to balance blood sugar levels. 8. Which cells are involved in spermatogenesis? Where does sperm production occur? • Sertoli (Sustentacular) cells support spermatogenesis. • Leydig (Interstitial) cells produce testosterone. • Occurs in the seminiferous tubules of the testes. 9. Know the hormones secreted by the testes and their functions: • Testosterone: Stimulates male development and sperm production. • Inhibin: Inhibits FSH to regulate sperm production. 10. What causes diabetes insipidus? How is it different from diabetes mellitus? • Diabetes insipidus: ADH deficiency → excessive urination. • Diabetes mellitus: Insulin issues → high blood glucose. 11. Know the 3 “P’s” of diabetes: • Polyuria: Excessive urination. • Polydipsia: Excessive thirst. • Polyphagia: Excessive hunger. 12. How are oxytocin and prolactin different? • Oxytocin: Stimulates uterine contractions and milk letdown. • Prolactin: Stimulates milk production. 13. Name the ovarian hormones and their functions: • Estrogen/Progesterone: Regulate cycle, pregnancy, and secondary sex characteristics. • Inhibin: Inhibits FSH secretion. ⸻ Muscle Physiology 14. Know 3 muscle types, their locations, and function: • Skeletal: Attached to bones; movement; voluntary. • Cardiac: Heart; pumps blood; involuntary. • Smooth: Organs/vessels; propels substances; involuntary. 15. Know the layers surrounding muscle: • Epimysium: Surrounds entire muscle. • Perimysium: Surrounds fascicle (bundle). • Endomysium: Surrounds individual fiber. 16. What is a fascicle? A bundle of muscle fibers. 17. What is a sarcomere? Name its regions: Smallest contractile unit (Z-disc to Z-disc). • Z-band, A-band (dark), I-band (light), H-zone. 18. What are actin and myosin? • Actin: Thin filament. • Myosin: Thick filament that pulls actin during contraction. 19. What is troponin and tropomyosin? • Tropomyosin blocks binding sites on actin. • Troponin binds Ca²⁺ to move tropomyosin and expose sites. 20. What is a motor unit? A motor neuron and all muscle fibers it controls. 21. Role of T-Tubule, SR, Terminal Cisternae: • T-Tubule: Conducts AP into cell. • SR: Stores calcium. • Terminal cisternae: Release calcium. 22. Which neurotransmitter is released at the neuromuscular junction? Acetylcholine (ACh). 23. What role does Ca²⁺ play in muscle physiology? Binds troponin, moves tropomyosin, exposes actin sites. 24. What happens to Ca²⁺ after action potential ends? Reabsorbed into SR by Ca²⁺ ATPase pump. 25. What is the function of ATP in muscle physiology? Powers myosin movement, detachment, and Ca²⁺ reuptake. 26. What is sliding filament theory? Myosin pulls actin filaments → sarcomere shortens → contraction. 27. What are DHP and Ryanodine receptors and their roles? • DHP: Voltage sensor in T-tubule. • Ryanodine: Releases Ca²⁺ from SR. 28. What is the function of AChE? Breaks down ACh to stop stimulation and contraction. 29. Difference between isotonic and isometric contractions: • Isotonic: Muscle changes length (shortens/lengthens). • Isometric: Muscle length stays same; tension builds. ⸻ Respiratory Physiology 30. Difference between conductive and respiratory divisions: • Conductive: Air passageways (nose to bronchioles). • Respiratory: Gas exchange (alveoli). 31. Type I & II alveolar cells and functions: • Type I: Gas exchange. • Type II: Secretes surfactant, repairs alveoli. 32. Dust cells and their functions: Alveolar macrophages that clean up particles/debris. 33. Muscles in relaxed vs. forced respiration: • Relaxed inhale: Diaphragm, external intercostals. • Forced inhale: Accessory neck muscles. • Forced exhale: Internal intercostals, abdominals. 34. What happens to pressure and volume when inhaling/exhaling? • Inhale: Volume ↑, pressure ↓. • Exhale: Volume ↓, pressure ↑. 35. Difference between systemic and pulmonary exchange: • Systemic: Gas exchange at tissues. • Pulmonary: Gas exchange in lungs. 36. What cells are involved in carrying gases? Red blood cells (RBCs). 37. Which enzyme converts CO₂ + H₂O → H₂CO₃? Carbonic anhydrase. 38. What does carbonic acid break into? H⁺ + HCO₃⁻ (bicarbonate ion). 39. What happens in hypoxia (low oxygen)? • ↓O₂, ↑CO₂, ↓pH (acidosis). 40. What happens in hypercapnia (high CO₂)? • ↑CO₂, ↓O₂, ↓pH (acidosis). 41. Receptors for blood pH and their locations: • Central (CSF pH): Medulla oblongata. • Peripheral (O₂, CO₂, pH): Carotid & aortic bodies. 42. CO₂ loading & O₂ unloading at tissues: • CO₂ enters blood → forms HCO₃⁻. • O₂ released to tissues. 43. CO₂ unloading & O₂ loading at alveoli: • CO₂ released from blood to lungs. • O₂ binds to hemoglobin. 44. Brain part for unconscious breathing: Medulla oblongata. 45. Obstructive vs. restrictive disorders + example: • Obstructive: Narrowed airways (asthma). • Restrictive: Reduced lung expansion (fibrosis). 46. Know spirometry volumes (not numbers): • Tidal volume, • Inspiratory/Expiratory reserve volume, • Residual volume, • Vital capacity, • Total lung capacity, • Inspiratory capacity, • Functional residual capacity. 47. Define eupnea, dyspnea, tachypnea, apnea, Kussmaul respiration: • Eupnea: Normal breathing. • Dyspnea: Labored breathing. • Tachypnea: Rapid, shallow breathing. • Apnea: No breathing. • Kussmaul: Deep, rapid (from acidosis based on chemical composition and how they enter target cells: • Steroid hormones: Lipid-soluble, diffuse through cell membrane (e.g., cortisol). • Protein/Peptide hormones: Water-soluble, bind to surface receptors (e.g., insulin). • Biogenic/Monoamines: Derived from amino acids (e.g., T3/T4), may need carriers or membrane receptors. 3. Know all 6 hormones secreted by the anterior pituitary gland and their functions: • TSH: Stimulates thyroid to release T3 and T4. • ACTH: Stimulates adrenal cortex to release cortisol. • GH: Stimulates tissue growth and protein synthesis. • PRL: Stimulates milk production. • FSH: Stimulates egg maturation/sperm production. • LH: Triggers ovulation and testosterone production. 4. What is thymosin? Which gland secretes it? What is its function? Thymosin is secreted by the thymus and helps in the development and maturation of T-cells. 5. Know thyroid gland hormones, the cells that secrete them, and their functions: • T3 & T4 (follicular cells): Increase metabolism and regulate appetite. • Calcitonin (C cells): Lowers blood calcium levels. 6. Know the hormones secreted by the adrenal gland and their specific functions: • Cortex: • Aldosterone: Retains Na⁺, excretes K⁺, raises blood pressure. • Cortisol: Increases glucose, metabolism of fat/protein. • Androgens: Precursor to sex hormones. • Medulla: • Epinephrine/Norepinephrine: Increase heart rate, blood flow, and alertness. 7. Function of glucagon and insulin in maintaining homeostasis: • Insulin (beta cells): Lowers blood glucose. • Glucagon (alpha cells): Raises blood glucose. • Antagonistic: They have opposing effects to balance blood sugar levels. 8. Which cells are involved in spermatogenesis? Where does sperm production occur? • Sertoli (Sustentacular) cells support spermatogenesis. • Leydig (Interstitial) cells produce testosterone. • Occurs in the seminiferous tubules of the testes. 9. Know the hormones secreted by the testes and their functions: • Testosterone: Stimulates male development and sperm production. • Inhibin: Inhibits FSH to regulate sperm production. 10. What causes diabetes insipidus? How is it different from diabetes mellitus? • Diabetes insipidus: ADH deficiency → excessive urination. • Diabetes mellitus: Insulin issues → high blood glucose. 11. Know the 3 “P’s” of diabetes: • Polyuria: Excessive urination. • Polydipsia: Excessive thirst. • Polyphagia: Excessive hunger. 12. How are oxytocin and prolactin different? • Oxytocin: Stimulates uterine contractions and milk letdown. • Prolactin: Stimulates milk production. 13. Name the ovarian hormones and their functions: • Estrogen/Progesterone: Regulate cycle, pregnancy, and secondary sex characteristics. • Inhibin: Inhibits FSH secretion. ⸻ Muscle Physiology 14. Know 3 muscle types, their locations, and function: • Skeletal: Attached to bones; movement; voluntary. • Cardiac: Heart; pumps blood; involuntary. • Smooth: Organs/vessels; propels substances; involuntary. 15. Know the layers surrounding muscle: • Epimysium: Surrounds entire muscle. • Perimysium: Surrounds fascicle (bundle). • Endomysium: Surrounds individual fiber. 16. What is a fascicle? A bundle of muscle fibers. 17. What is a sarcomere? Name its regions: Smallest contractile unit (Z-disc to Z-disc). • Z-band, A-band (dark), I-band (light), H-zone. 18. What are actin and myosin? • Actin: Thin filament. • Myosin: Thick filament that pulls actin during contraction. 19. What is troponin and tropomyosin? • Tropomyosin blocks binding sites on actin. • Troponin binds Ca²⁺ to move tropomyosin and expose sites. 20. What is a motor unit? A motor neuron and all muscle fibers it controls. 21. Role of T-Tubule, SR, Terminal Cisternae: • T-Tubule: Conducts AP into cell. • SR: Stores calcium. • Terminal cisternae: Release calcium. 22. Which neurotransmitter is released at the neuromuscular junction? Acetylcholine (ACh). 23. What role does Ca²⁺ play in muscle physiology? Binds troponin, moves tropomyosin, exposes actin sites. 24. What happens to Ca²⁺ after action potential ends? Reabsorbed into SR by Ca²⁺ ATPase pump. 25. What is the function of ATP in muscle physiology? Powers myosin movement, detachment, and Ca²⁺ reuptake. 26. What is sliding filament theory? Myosin pulls actin filaments → sarcomere shortens → contraction. 27. What are DHP and Ryanodine receptors and their roles? • DHP: Voltage sensor in T-tubule. • Ryanodine: Releases Ca²⁺ from SR. 28. What is the function of AChE? Breaks down ACh to stop stimulation and contraction. 29. Difference between isotonic and isometric contractions: • Isotonic: Muscle changes length (shortens/lengthens). • Isometric: Muscle length stays same; tension builds. ⸻ Respiratory Physiology 30. Difference between conductive and respiratory divisions: • Conductive: Air passageways (nose to bronchioles). • Respiratory: Gas exchange (alveoli). 31. Type I & II alveolar cells and functions: • Type I: Gas exchange. • Type II: Secretes surfactant, repairs alveoli. 32. Dust cells and their functions: Alveolar macrophages that clean up particles/debris. 33. Muscles in relaxed vs. forced respiration: • Relaxed inhale: Diaphragm, external intercostals. • Forced inhale: Accessory neck muscles. • Forced exhale: Internal intercostals, abdominals. 34. What happens to pressure and volume when inhaling/exhaling? • Inhale: Volume ↑, pressure ↓. • Exhale: Volume ↓, pressure ↑. 35. Difference between systemic and pulmonary exchange: • Systemic: Gas exchange at tissues. • Pulmonary: Gas exchange in lungs. 36. What cells are involved in carrying gases? Red blood cells (RBCs). 37. Which enzyme converts CO₂ + H₂O → H₂CO₃? Carbonic anhydrase. 38. What does carbonic acid break into? H⁺ + HCO₃⁻ (bicarbonate ion). 39. What happens in hypoxia (low oxygen)? • ↓O₂, ↑CO₂, ↓pH (acidosis). 40. What happens in hypercapnia (high CO₂)? • ↑CO₂, ↓O₂, ↓pH (acidosis). 41. Receptors for blood pH and their locations: • Central (CSF pH): Medulla oblongata. • Peripheral (O₂, CO₂, pH): Carotid & aortic bodies. 42. CO₂ loading & O₂ unloading at tissues: • CO₂ enters blood → forms HCO₃⁻. • O₂ released to tissues. 43. CO₂ unloading & O₂ loading at alveoli: • CO₂ released from blood to lungs. • O₂ binds to hemoglobin. 44. Brain part for unconscious breathing: Medulla oblongata. 45. Obstructive vs. restrictive disorders + example: • Obstructive: Narrowed airways (asthma). • Restrictive: Reduced lung expansion (fibrosis). 46. Know spirometry volumes (not numbers): • Tidal volume, • Inspiratory/Expiratory reserve volume, • Residual volume, • Vital capacity, • Total lung capacity, • Inspiratory capacity, • Functional residual capacity. 47. Define eupnea, dyspnea, tachypnea, apnea, Kussmaul respiration: • Eupnea: Normal breathing. • Dyspnea: Labored breathing. • Tachypnea: Rapid, shallow breathing. • Apnea: No breathing
Updated 3d ago
flashcards Flashcards (11)
Synthesis ACETANILIDE
Updated 12d ago
flashcards Flashcards (59)
Analgesics (Pain Relievers) • Acetaminophen • Hydrocodone • Codeine Antacids/Anti-ulcer (GERD treatment) • Esomeprazole • Calcium carbonate • Famotidine Antibiotics (Bacterial Infections) • Amoxicillin • Ciprofloxacin • Sulfamethoxazole Anticholinergics (Smooth Muscle Spasms) • Ipratropium • Dicyclomine • Hyoscyamine Anticoagulants (Blood Thinners - Delay Clotting) • Warfarin • Apixaban • Heparin Anticonvulsants (Prevent/Control Seizures) • Clonazepam • Phenytoin • Gabapentin Antidepressants (Relieve Depression) • Doxepin • Fluoxetine • Duloxetine • Selegiline Antidiarrheals (Reduce Diarrhea) • Bismuth subsalicylate • Loperamide • Diphenoxylate/atropine Antiemetics (Reduce Nausea/Vomiting) • Metoclopramide • Ondansetron Antifungals (Fungal Infections) • Fluconazole • Nystatin • Miconazole Antihistamines (Relieve Allergies) • Diphenhydramine • Cetirizine • Loratadine Antihypertensives (Lower Blood Pressure) • Metoprolol • Lisinopril • Valsartan • Clonidine Anti-inflammatories (Reduce Inflammation) • Ibuprofen • Celecoxib • Naproxen Antilipemics (Lower Cholesterol) • Atorvastatin • Fenofibrate • Cholestyramine Antimigraine Agents (Relieve Migraines) • Topiramate • Sumatriptan • Rizatriptan • Zolmitriptan Anti-osteoporosis Agents (Improve Bone Density) • Alendronate • Raloxifene • Calcitonin Antipsychotics (Psychosis Treatment) • Quetiapine • Haloperidol • Risperidone Antipyretics (Reduce Fever) • Acetaminophen • Ibuprofen • Aspirin Skeletal Muscle Relaxants (Reduce/Prevent Muscle Spasms) • Cyclobenzaprine • Methocarbamol • Carisoprodol Antitussives/Expectorants (Cough/Mucus Relief) • Dextromethorphan • Codeine • Guaifenesin Antivirals (Viral Infections) • Acyclovir • Interferon • Oseltamivir Anxiolytics (Reduce Anxiety - Anti-Anxiety) • Clonazepam • Diazepam • Lorazepam Bronchodilators (Relax Airway Muscles - Asthma, COPD) • Albuterol • Isoproterenol • Theophylline CNS Stimulants (Reduce Hyperactivity - ADHD, Narcolepsy) • Methylphenidate • Dextroamphetamine • Lisdexamfetamine Contraceptives (Prevent Pregnancy) • Medroxyprogesterone acetate • Ethinyl estradiol • Drospirenone Decongestants (Relieve Nasal Congestion) • Pseudoephedrine • Phenylephrine • Oxymetazoline Diuretics (Eliminate Excess Fluid - Treats Hypertension & Edema) • Furosemide • Hydrochlorothiazide • Bumetanide Hormone Replacements (Stabilize Hormone Deficiencies - Thyroid, Diabetes, Menopause) • Levothyroxine • Insulin • Desmopressin • Estrogen Laxatives & Stool Softeners (Promote Bowel Movements) • Magnesium hydroxide • Bisacodyl • Docusate sodium Oral Hypoglycemics (Reduce Blood Glucose - Diabetes Treatment) • Metformin • Glyburide • Pioglitazone Sedative-Hypnotics (Induce Sleep/Relaxation - Insomnia, Anxiety) • Zolpidem • Temazepam • Eszopiclone Bo
Updated 12d ago
flashcards Flashcards (10)
Acetylcholine
Updated 12d ago
flashcards Flashcards (8)
1. Functions of Muscles: • Movement: Muscles contract to produce movement in the body, such as walking, running, or even facial expressions. • Posture and Stability: Muscles help maintain posture and stabilize joints, preventing falls or loss of balance. • Heat Production: Muscle contractions generate heat, which is vital for maintaining body temperature. • Protection of Internal Organs: Muscles, particularly in the abdominal region, protect internal organs from injury. • Circulation of Blood and Lymph: Cardiac and smooth muscles play roles in circulating blood and lymph throughout the body. 2. Characteristics of Muscles: • Excitability (Responsiveness): Muscles can respond to stimuli (like nerve signals). • Contractility: Muscles can contract or shorten when stimulated. • Extensibility: Muscles can be stretched without damage. • Elasticity: Muscles can return to their original shape after being stretched or contracted. 3. Locations of Smooth, Cardiac, and Skeletal Muscle: • Smooth Muscle: Found in walls of internal organs (e.g., stomach, intestines, blood vessels). • Cardiac Muscle: Found only in the heart. • Skeletal Muscle: Attached to bones and responsible for voluntary movements. 4. Events of Skeletal Muscle Contraction: 1. Nerve Impulse: A signal is sent from a motor neuron to the muscle. 2. Release of Acetylcholine: The neurotransmitter acetylcholine is released into the neuromuscular junction. 3. Muscle Fiber Activation: Acetylcholine stimulates muscle fibers, causing an action potential. 4. Calcium Release: The action potential triggers the release of calcium ions from the sarcoplasmic reticulum. 5. Cross-Bridge Formation: Calcium binds to troponin, moving tropomyosin, which allows myosin heads to attach to actin. 6. Power Stroke: Myosin heads pull actin filaments inward, causing the muscle to contract. 7. Relaxation: ATP breaks the cross-bridge, and the muscle relaxes when calcium is pumped back into the sarcoplasmic reticulum. 5. Isometric vs. Isotonic Contractions: • Isometric Contraction: The muscle generates tension without changing its length (e.g., holding a weight in a fixed position). • Isotonic Contraction: The muscle changes length while generating tension (e.g., lifting a weight). 6. Primary Functions of the Skeletal System: • Support: Provides structural support for the body. • Protection: Shields vital organs (e.g., brain, heart, lungs). • Movement: Works with muscles to allow movement. • Mineral Storage: Stores minerals like calcium and phosphorus. • Blood Cell Production: Bone marrow produces blood cells. • Energy Storage: Fat is stored in bone cavities. 7. Parts of a Long Bone: • Diaphysis: The shaft of the bone. • Epiphysis: The ends of the bone. • Metaphysis: Region between the diaphysis and epiphysis. • Medullary Cavity: Hollow cavity inside the diaphysis, containing bone marrow. • Periosteum: Outer membrane covering the bone. • Endosteum: Inner lining of the medullary cavity. 8. Inner and Outer Connective Tissue Linings of a Bone: • Outer: Periosteum. • Inner: Endosteum. 9. Structure of a Flat Bone: • Compact Bone: Dense bone found on the outside. • Spongy Bone: Lighter, less dense bone found inside, filled with red or yellow marrow. • No medullary cavity (unlike long bones). 10. Parts of the Osteon: • Central Canal (Haversian Canal): Contains blood vessels and nerves. • Lamellae: Concentric layers of bone matrix surrounding the central canal. • Lacunae: Small spaces containing osteocytes (bone cells). • Canaliculi: Small channels that connect lacunae and allow for nutrient exchange. 11. How Calcitonin, Calcitriol, and PTH Affect Blood Calcium: • Calcitonin: Lowers blood calcium levels by inhibiting osteoclast activity (bone resorption). • Calcitriol: Increases blood calcium by promoting calcium absorption in the intestines and bone resorption. • PTH (Parathyroid Hormone): Raises blood calcium by stimulating osteoclasts to break down bone and release calcium. 12. Two Forms of Ossification: • Intramembranous Ossification: Bone develops directly from mesenchymal tissue (e.g., flat bones of the skull). • Endochondral Ossification: Bone replaces a cartilage model (e.g., long bones). 13. Difference Between Appositional and Interstitial Growth: • Appositional Growth: Increase in bone diameter (growth at the surface). • Interstitial Growth: Increase in bone length (growth from within). 14. Different Joint Types: • Fibrous Joints: Connected by fibrous tissue (e.g., sutures of the skull). • Cartilaginous Joints: Connected by cartilage (e.g., intervertebral discs). • Synovial Joints: Have a fluid-filled joint cavity (e.g., knee, elbow). 15. Components of a Synovial Joint: • Articular Cartilage: Covers the ends of bones. • Synovial Membrane: Lines the joint capsule and produces synovial fluid. • Joint Capsule: Surrounds the joint, providing stability. • Ligaments: Connect bones to other bones. • Synovial Fluid: Lubricates the joint. 16. Hinge Joint Location: • Found in the elbow and knee. 17. Pivot Joint Location: • Found between the first and second cervical vertebrae (atlantoaxial joint). 18. Difference Between a Tendon and a Ligament: • Tendon: Connects muscle to bone. • Ligament: Connects bone to bone. 19. What is a Bursa? • A fluid-filled sac that reduces friction and cushions pressure points between the skin and bones or muscles and bones. 20. Three Types of Arthritis: • Osteoarthritis: Degeneration of joint cartilage and underlying bone, often due to wear and tear. • Rheumatoid Arthritis: Autoimmune disease causing inflammation in joints. • Gout: Caused by the accumulation of uric acid crystals in the joints. 21. Strain vs. Sprain: • A strain is damage to a muscle or tendon, whereas a sprain is damage to a ligament
Updated 28d ago
flashcards Flashcards (6)
0.00
studied byStudied by 0 people