1/38
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Maclaurin Series of e^x
e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots
Maclaurin Series of \sin(x)
\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots
Maclaurin Series of \cos(x)
\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots
Maclaurin Series of \frac{1}{1+x}
\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n = 1 - x + x^2 - x^3 + \cdots \quad \text{for } |x| < 1
Taylor Polynomial Approximation
P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^k = f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \cdots + \frac{f^{(n)}(c)}{n!}(x - c)^n
Lagrange Error Bound
|R_n(x)| \leq \left| \frac{\max_{x \leq z \leq c} \left| f^{(n+1)}(z) \right| (x - c)^{n+1}}{(n+1)!} \right|
Alt. Series Error Bound
\text{If } \sum_{n=1}^{\infty} (-1)^{n+1} a_n \text{ converges, then } |S - S_n| = |R_n| \leq a_{n+1}
Euler’s Method
y_{n+1} = y_n + y' \, \Delta x
Exponential Growth (Solution to \frac{dy}{dt} = ky)
y(t) = C e^{kt} , C = Initial Value
Derivative of Logistic Function
\frac{dy}{dt} = ky\left(1 - \frac{y}{L}\right)
Where L is the Limiting Value
Point of Inflection for Logistic Function
(t, \frac{L}{2})
Where L is the Limiting Value
Max Growth Rate occurs here too
Derivative of Parametric Equation
x(t), y(t)
\frac{dy}{dx} = \frac{y'}{x'} \,, x’≠0
Second Derivative of Parametric Equation
x(t), y(t)
\frac{d²y}{dx²} = \frac{(\frac{dy}{dx})’}{x’}
where \frac{dy}{dx} = \frac{y’}{x’}
Arc Length for f(x) from a to b
L = \int_a^b \sqrt{1 + f’(x)^2} \, dx
Arc Length in Parametric Form for x(t), y(t) from a to b
L = \int_a^b \sqrt{(x'(t))^2 + (y'(t))^2} \, dt
Convert rectangular x, y to polar form
x = rcos\theta
y = rsin\theta
Convert polar r, \theta to rectangular
tan\theta = \frac{x}{y}
r² = x² + y²
Area of Polar Region r(\theta) from a to b
A=\frac{1}{2}\int_{a}^{b}r²d\theta
Integration by Parts (\int{udv})
\int{udv} = uv - \int{vdu}
Area Under a Curve
A = \int_a^b{[upper - lower]}
A = \int_a^b{[right - left]}
Volume - Disk Method (No Hole)
V = \pi\int_a^b{(R)²dx}
where R is the distance to the axis of rotation
Washer Method (with hole)
V = \pi\int_a^b{(upper)² - (lower)²dx}
V = \pi\int_a^b{(right)² - (left)²dx}
Fundamental theorem of calculus, pt. 1
\int_a^x{f’(t)dt} = f(x)
Fundamental theorem of calculus, pt. 2
\int_a^b{f’(t)dt} = f(b) - f(a)
Derivative of polar equation
x = f(\theta)cos(\theta)
y = f(\theta)sin(\theta)
\frac{dy}{dx} = \frac{y’(\theta)}{x’(\theta)}
Ratio Test for Integral of Convergence (Power Series)
\sum_{n=1}^{\infty}a_n
Ratio Test:
lim < 1 → converges to an interval
= 0 → all values x
= infinity → only to center (x = c)
Average rate of change from a to b
\frac{f(b) - f(a)}{b - a}
Average value of function from a to b
\frac{\int_a^b{f(x)dx}}{b-a}
Trapezoid Area (For Riemann Sums)
A = \frac{b1+b2}{2} * h