Algebraic Identities

0.0(0)
studied byStudied by 0 people
full-widthCall with Kai
GameKnowt Play
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/64

flashcard set

Earn XP

Description and Tags

Flashcards made from Maths Unplugged's crash course video. Suitable for those writing JEE. Answer only with definition (I've included cards for both ways around).

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

65 Terms

1
New cards

(a+b)²

a²+b²+2ab

2
New cards

(a-b)²

a²+b²-2ab

3
New cards

a²+b²+2ab

(a+b)²

4
New cards

a²+b²-2ab

(a-b)²

5
New cards

(a+b)(a-b)

a²-b²

6
New cards

a²-b²

(a+b)(a-b)

7
New cards

a^{m^n}

a^{m^n}

8
New cards

(a^m)^n

a^{mn}

9
New cards

(\Sigma a)²

\Sigma(a²)+2\Sigma(a_1a_2)

10
New cards

\Sigma(a²)+2\Sigma(a_1a_2)

(\Sigma a)²

11
New cards

\Sigma a_1a_2

\dfrac{(\Sigma a)²-\Sigma (a²)}{2} 

12
New cards

\dfrac{(\Sigma a)²-\Sigma (a²)}{2} 

\Sigma a_1a_2

13
New cards

\Sigma a_1a_2 = \dfrac{(\Sigma a)²-\Sigma (a²)}{2}

How is this derived?

By using identities like (a+b)² and (a+b+c)².

14
New cards

(1+a)(1+a²)(1+a^4)(1+a^8)…(1+a^n)

\dfrac{1-a^{2n}}{1-a}

15
New cards

\dfrac{1-a^{2n}}{1-a}

(1+a)(1+a²)(1+a^4)(1+a^8)…(1+a^n)

16
New cards

\dfrac{1-a^{2n}}{1-a}=(1+a)(1+a²)(1+a^4)(1+a^8)…(1+a^n)

How is this derived?

Multiple and divide RHS by (1-a), then you use (a+b)(a-b)=a²-b²) to cancel out all the consecutive terms.

17
New cards

(a+b+c)²

a²+b²+c²+2(ab+bc+ca)

18
New cards

a²+b²+c²+2(ab+bc+ca)

(a+b+c)²

19
New cards

(a+b+c+d)²

a²+b²+c²+d²+2(ab + ac + ad + bc + bd + cd)

20
New cards

(a+b)³

a³+b³+3ab(a+b)

21
New cards

a³+b³+3ab(a+b)

(a+b)³

22
New cards

a²+b²+c²+d²+2(ab + ac + ad + bc + bd + cd)

(a+b+c+d)²

23
New cards

a³+b³

give both forms of this.

(a+b)³-3ab(a+b)

(a+b)(a²+b²-ab)

24
New cards

(a+b)³-3ab(a+b)

a³+b³

25
New cards

(a+b)(a²+b²-ab)

a³+b³

26
New cards

(a-b)³

a³-b³-3ab(a-b)

27
New cards

a³-b³-3ab(a-b)

(a-b)³

28
New cards

a³-b³

give both forms

(a-b)³+3ab(a-b)

(a-b)(a²+b²+ab)

29
New cards

(a-b)(a²+b²+ab)

a³-b³

30
New cards

(a-b)³+3ab(a-b)

a³-b³

31
New cards

a²-ab+b²

Give all 3 forms

(a+b)²-3ab

(a-b)²+ab

\dfrac{a³+b³}{(a+b)}

32
New cards

\dfrac{a³+b³}{(a+b)}

a²-ab+b²

33
New cards

a²+ab+b²

give all 3 forms

(a+b)²-ab

(a-b)²+3ab

\dfrac{a³-b³}{a-b}

34
New cards

\dfrac{a³-b³}{a-b}

a²+ab+b²

35
New cards

a^4-b^4

(a²+b²)(a²-b²)

36
New cards

a^4+b^4

(a²+b²)²-2a²b²

37
New cards

a²+b²

(a+b)²-2ab

38
New cards

a^4+4b^4

(a²+2b²-2ab)(a²+2b²+2ab)

derive simply and simplify

39
New cards

a^4+a²+1

(a²+a+1)(a²-a+1)

40
New cards

(a²+a+1)(a²-a+1)

a^4+a²+1

41
New cards

a^8+a^4+1

(a^4+a²+1)(a^4-a²+1)

42
New cards

(a^4+a²+1)(a^4-a²+1)

a^8+a^4+1

43
New cards

ab+bc+ca

\Big(\dfrac1a+\dfrac1b+\dfrac1c\Big)abc

44
New cards

\Big(\dfrac1a+\dfrac1b+\dfrac1c\Big)abc

ab+bc+ca

45
New cards

a²+b²+c²

(a+b+c)²-2(ab+bc+ca)

46
New cards

(a+b+c)²-2(ab+bc+ca)

a²+b²+c²

47
New cards

a³+b³+c³

(a+b+c)(a²+b²+c²-ab-bc-ca) + 3abc

48
New cards

(a+b+c)(a²+b²+c²-ab-bc-ca) + 3abc

a³+b³+c³

49
New cards

If a+b+c=0, what is a³+b³+c³=?

a³+b³+c³=3abc

50
New cards

if  a³+b³+c³=3abc, then what can you infer? (2 things)

either a+b+c=0

or a=b=c

51
New cards

a²+b²+c²-ab-bc-ca

Give all 3 forms of this.

=\dfrac{1}{2}[(a-b)²+(b-c)²+(c-a)²]

=(a+b+c)²-3(ab+bc+ca)

=\dfrac{(a+b+c)³-3abc}{a+b+c}

52
New cards

if a²+b²+c²-ab-bc-ca=0, what can you infer (2 things)?

that a³+b³+c³=3abc

and (a-b)²+(b-c)²+(c-a)²=0 which means a=b=c

53
New cards

if a²+b²+c²=0, what can you infer?

a=b=c=0

54
New cards

(a²-b²)³+(b²-c²)³+(c²-a²)³=?

How do you derive this?

3\left(a^2-b^2\right)\left(b^2-c^2\right)\left(c^2-a^2\right)

This is like X³+Y³+Z³.

Since X+Y+Z=0, then X³+Y³+Z³=3XYZ.

55
New cards

What can you infer from (x-a)²+(y-b)²+(z-c)³=0?

x=a,y=b,z=c

56
New cards

What can you infer from (x-a)²+(x-b)²+(x-c)³=0?

a=b=c

if not, the equation cannot exist

57
New cards

abc+(ab+bc+ca)+(a+b+c)+1

(a+1)(b+1)(c+1)

58
New cards

(a+1)(b+1)(c+1)

abc+(ab+bc+ca)+(a+b+c)+1

59
New cards

abcd+(a+b+c+d)+(ab+ac+ad+bc+bd+cd)+(abc+abd+acd+bcd)+1

(a+1)(b+1)(c+1)(d+1)

60
New cards

(a_1+1)(a_2+1)(a_3+1)+…+(a_n+1)

1 + \Sigma a_1 +\Sigma (a_1a_2)+\Sigma (a_1a_2a_3)+…+(a_1a_2a_3…a_n)

61
New cards

1 + \Sigma a_1 +\Sigma (a_1a_2)+\Sigma (a_1a_2a_3)+…+(a_1a_2a_3…a_n)

(a_1+1)(a_2+1)(a_3+1)+…+(a_n+1)

62
New cards

(a+b+c)³

a³+b³+c³+3(a+b)(b+c)(c+a)

63
New cards

a³+b³+c³+3(a+b)(b+c)(c+a)

(a+b+c)³

64
New cards

(a+b+c)³=a³+b³+c³+3(a+b)(b+c)(c+a)

How do you derive this?

consider X=a+b and Y=c and solve (X+Y)³.

65
New cards

(a-b+c+d)(a+b-c+d)(a+b+c-d)(b+c+d-a)

How do you approach this?

(a+b+c+d-2b)(a+b+c+d-2c)(a+b+d+c-2d)(a+b+c+d-2a)

Let a+b+c+d=x)

then,

=(x-2a)(x-2b)(x-2c)(x-2d).