1/64
Flashcards made from Maths Unplugged's crash course video. Suitable for those writing JEE. Answer only with definition (I've included cards for both ways around).
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
(a+b)²
a²+b²+2ab
(a-b)²
a²+b²-2ab
a²+b²+2ab
(a+b)²
a²+b²-2ab
(a-b)²
(a+b)(a-b)
a²-b²
a²-b²
(a+b)(a-b)
a^{m^n}
a^{m^n}
(a^m)^n
a^{mn}
(\Sigma a)²
\Sigma(a²)+2\Sigma(a_1a_2)
\Sigma(a²)+2\Sigma(a_1a_2)
(\Sigma a)²
\Sigma a_1a_2
\dfrac{(\Sigma a)²-\Sigma (a²)}{2}
\dfrac{(\Sigma a)²-\Sigma (a²)}{2}
\Sigma a_1a_2
\Sigma a_1a_2 = \dfrac{(\Sigma a)²-\Sigma (a²)}{2}
How is this derived?
By using identities like (a+b)² and (a+b+c)².
(1+a)(1+a²)(1+a^4)(1+a^8)…(1+a^n)
\dfrac{1-a^{2n}}{1-a}
\dfrac{1-a^{2n}}{1-a}
(1+a)(1+a²)(1+a^4)(1+a^8)…(1+a^n)
\dfrac{1-a^{2n}}{1-a}=(1+a)(1+a²)(1+a^4)(1+a^8)…(1+a^n)
How is this derived?
Multiple and divide RHS by (1-a), then you use (a+b)(a-b)=a²-b²) to cancel out all the consecutive terms.
(a+b+c)²
a²+b²+c²+2(ab+bc+ca)
a²+b²+c²+2(ab+bc+ca)
(a+b+c)²
(a+b+c+d)²
a²+b²+c²+d²+2(ab + ac + ad + bc + bd + cd)
(a+b)³
a³+b³+3ab(a+b)
a³+b³+3ab(a+b)
(a+b)³
a²+b²+c²+d²+2(ab + ac + ad + bc + bd + cd)
(a+b+c+d)²
a³+b³
give both forms of this.
(a+b)³-3ab(a+b)
(a+b)(a²+b²-ab)
(a+b)³-3ab(a+b)
a³+b³
(a+b)(a²+b²-ab)
a³+b³
(a-b)³
a³-b³-3ab(a-b)
a³-b³-3ab(a-b)
(a-b)³
a³-b³
give both forms
(a-b)³+3ab(a-b)
(a-b)(a²+b²+ab)
(a-b)(a²+b²+ab)
a³-b³
(a-b)³+3ab(a-b)
a³-b³
a²-ab+b²
Give all 3 forms
(a+b)²-3ab
(a-b)²+ab
\dfrac{a³+b³}{(a+b)}
\dfrac{a³+b³}{(a+b)}
a²-ab+b²
a²+ab+b²
give all 3 forms
(a+b)²-ab
(a-b)²+3ab
\dfrac{a³-b³}{a-b}
\dfrac{a³-b³}{a-b}
a²+ab+b²
a^4-b^4
(a²+b²)(a²-b²)
a^4+b^4
(a²+b²)²-2a²b²
a²+b²
(a+b)²-2ab
a^4+4b^4
(a²+2b²-2ab)(a²+2b²+2ab)
derive simply and simplify
a^4+a²+1
(a²+a+1)(a²-a+1)
(a²+a+1)(a²-a+1)
a^4+a²+1
a^8+a^4+1
(a^4+a²+1)(a^4-a²+1)
(a^4+a²+1)(a^4-a²+1)
a^8+a^4+1
ab+bc+ca
\Big(\dfrac1a+\dfrac1b+\dfrac1c\Big)abc
\Big(\dfrac1a+\dfrac1b+\dfrac1c\Big)abc
ab+bc+ca
a²+b²+c²
(a+b+c)²-2(ab+bc+ca)
(a+b+c)²-2(ab+bc+ca)
a²+b²+c²
a³+b³+c³
(a+b+c)(a²+b²+c²-ab-bc-ca) + 3abc
(a+b+c)(a²+b²+c²-ab-bc-ca) + 3abc
a³+b³+c³
If a+b+c=0, what is a³+b³+c³=?
a³+b³+c³=3abc
if a³+b³+c³=3abc, then what can you infer? (2 things)
either a+b+c=0
or a=b=c
a²+b²+c²-ab-bc-ca
Give all 3 forms of this.
=\dfrac{1}{2}[(a-b)²+(b-c)²+(c-a)²]
=(a+b+c)²-3(ab+bc+ca)
=\dfrac{(a+b+c)³-3abc}{a+b+c}
if a²+b²+c²-ab-bc-ca=0, what can you infer (2 things)?
that a³+b³+c³=3abc
and (a-b)²+(b-c)²+(c-a)²=0 which means a=b=c
if a²+b²+c²=0, what can you infer?
a=b=c=0
(a²-b²)³+(b²-c²)³+(c²-a²)³=?
How do you derive this?
3\left(a^2-b^2\right)\left(b^2-c^2\right)\left(c^2-a^2\right)
This is like X³+Y³+Z³.
Since X+Y+Z=0, then X³+Y³+Z³=3XYZ.
What can you infer from (x-a)²+(y-b)²+(z-c)³=0?
x=a,y=b,z=c
What can you infer from (x-a)²+(x-b)²+(x-c)³=0?
a=b=c
if not, the equation cannot exist
abc+(ab+bc+ca)+(a+b+c)+1
(a+1)(b+1)(c+1)
(a+1)(b+1)(c+1)
abc+(ab+bc+ca)+(a+b+c)+1
abcd+(a+b+c+d)+(ab+ac+ad+bc+bd+cd)+(abc+abd+acd+bcd)+1
(a+1)(b+1)(c+1)(d+1)
(a_1+1)(a_2+1)(a_3+1)+…+(a_n+1)
1 + \Sigma a_1 +\Sigma (a_1a_2)+\Sigma (a_1a_2a_3)+…+(a_1a_2a_3…a_n)
1 + \Sigma a_1 +\Sigma (a_1a_2)+\Sigma (a_1a_2a_3)+…+(a_1a_2a_3…a_n)
(a_1+1)(a_2+1)(a_3+1)+…+(a_n+1)
(a+b+c)³
a³+b³+c³+3(a+b)(b+c)(c+a)
a³+b³+c³+3(a+b)(b+c)(c+a)
(a+b+c)³
(a+b+c)³=a³+b³+c³+3(a+b)(b+c)(c+a)
How do you derive this?
consider X=a+b and Y=c and solve (X+Y)³.
(a-b+c+d)(a+b-c+d)(a+b+c-d)(b+c+d-a)
How do you approach this?
(a+b+c+d-2b)(a+b+c+d-2c)(a+b+d+c-2d)(a+b+c+d-2a)
Let a+b+c+d=x)
then,
=(x-2a)(x-2b)(x-2c)(x-2d).