Lectire 8 - Ceramics and Other Materials

0.0(0)
studied byStudied by 0 people
full-widthCall with Kai
GameKnowt Play
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/18

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

19 Terms

1
New cards

What are Ceramics, Glasses and Glass Ceramics?

  • Definition: an inorganic, nonmetallic solid
    prepared from powdered materials and
    fabricated into products through the application
    of heat

    • Primarily ionic and covalent bonds

  • Categories of these materials

    • crystalline (bio-resorbable or inert) ceramics

    • glass, amorphous,

    • glass-ceramics, starts as a glass and ends up as
      a polycrystalline ceramics possibly with a
      residue glassy matrix.

  • General properties:

    • Ionic bond =>Difficult to shear, very low ductility,
      high compressive strength, low tensile strength;

    • Low thermal and electrical conductivity

    • Refractory and high Tm

    • High hardness  dental materials

    •  Aesthetically pleasing appearance 

<ul><li><p><span>Definition: an inorganic, nonmetallic solid<br>prepared from powdered materials and<br>fabricated into products through the application<br>of heat</span></p><ul><li><p><span>Primarily ionic and covalent bonds</span></p></li></ul></li><li><p><span>Categories of these materials</span></p><ul><li><p><span>crystalline (bio-resorbable or inert) ceramics</span></p></li><li><p><span>glass, amorphous,</span></p></li><li><p><span>glass-ceramics, starts as a glass and ends up as<br>a polycrystalline ceramics possibly with a<br>residue glassy matrix.</span></p></li></ul></li><li><p><span>General properties:</span></p><ul><li><p><span>Ionic bond =&gt;Difficult to shear, very low ductility,<br>high compressive strength, low tensile strength;</span></p></li><li><p><span>Low thermal and electrical conductivity</span></p></li><li><p><span>Refractory and high Tm</span></p></li><li><p><span>High hardness  dental materials</span></p></li><li><p><span>&nbsp;Aesthetically pleasing appearance </span></p></li></ul></li></ul><p></p>
2
New cards

Variation in Slip Between Metal and Ceramics

• In ceramics, dislocation glide must occur over 2 atomic
positions due to the electroneutrality requirement
• Less slip in ceramics
=> More brittle fracture

<p><span style="color: rgb(255, 252, 252);">• In ceramics, dislocation glide must occur over 2 atomic</span><span style="color: rgb(255, 252, 252);"><br></span><span style="color: rgb(255, 252, 252);">positions due to the electroneutrality requirement</span><span style="color: rgb(255, 252, 252);"><br></span><span style="color: rgb(255, 252, 252);">• Less slip in ceramics</span><span style="color: rgb(255, 252, 252);"><br></span><span style="color: rgb(255, 252, 252);">=&gt; More brittle fracture</span></p>
3
New cards

Nearly Inert Bioceramics

• Alumina (Al2O3)
• Sapphire or ruby
• Single crystal or polycrystalline
• Excellent corrosion resistance and biocompatibility (very thin fibrous layer)


• High strength → structural support such as bone plates, bone screws


• Small grain size and narrow distribution → high hardness and
low surface roughness → low friction and wear → joint replacement.


<p><span style="color: rgb(249, 247, 247);">• Alumina (Al2O3)</span><span style="color: rgb(249, 247, 247);"><br></span><span style="color: rgb(249, 247, 247);">• Sapphire or ruby</span><span style="color: rgb(249, 247, 247);"><br></span><span style="color: rgb(249, 247, 247);">• Single crystal or polycrystalline</span><span style="color: rgb(249, 247, 247);"><br></span><span style="color: rgb(249, 247, 247);">• Excellent corrosion resistance and biocompatibility (very thin fibrous layer)</span></p><p><span style="color: rgb(249, 247, 247);"><br></span><span style="color: rgb(249, 247, 247);">• High strength → structural support such as bone plates, bone screws</span></p><p><span style="color: rgb(249, 247, 247);"><br></span><span style="color: rgb(249, 247, 247);">• Small grain size and narrow distribution → high hardness and</span><span style="color: rgb(249, 247, 247);"><br></span><span style="color: rgb(249, 247, 247);">low surface roughness → low friction and wear → joint replacement.</span></p><p><span style="color: rgb(249, 247, 247);"><br></span></p>
4
New cards

Joint Replacement Applications of Alumina

Alumina socket and ball, coefficient of friction decreases with time and approaches the value of a normal joint  wear 10 times slower than metal-PE surfaces

<p><span style="color: rgb(253, 253, 253);">Alumina socket and ball, coefficient of friction decreases with time and approaches&nbsp;the value of a normal joint  wear 10 times slower than metal-PE surfaces</span></p>
5
New cards

Biodegradable or Resorbable Ceramics:

What causes the biodegradability or resorption?

• Resorption or biodegradation is caused by
– Physiochemical dissolution, depending on the solubility of the
material and local pH
– Physical disintegration into small particles as a result of
preferential chemical attack of grain boundaries
– Biological factors, such as phagocytosis, which also causes a
decrease in local pH

6
New cards

Calcium Phosphate

• The mineral phase of bone and teeth is mainly calcium and
phosphate ions.

bIODEGRADABLE CERAMIC

• Solubility and hydrolysis decrease with increasing Ca/P ratio.
• Ca/P ratio  1 is not suitable for biological implantation.

<p><span style="color: rgb(255, 255, 255);">• The mineral phase of bone and teeth is mainly calcium and</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">phosphate ions.</span></p><p><span style="color: rgb(255, 255, 255);">bIODEGRADABLE CERAMIC</span></p><p><span style="color: rgb(255, 255, 255);">• Solubility and hydrolysis decrease with increasing Ca/P ratio.</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">• Ca/P ratio  1 is not suitable for biological implantation.</span></p>
7
New cards

Hydroxyapatite (HA)

  • Ca10(PO4)6(OH)2,

  • Hard tissue contain 60% HA (mostly carbonate HA), 25% water and 15% organic materials. HA can be converted from coral or animal bone

  • Manufacturing:
    – Ca(NO3)2 + NaH2PO4 → precipitate of HA → drying and filtering → furnace 1150 degrees C → grounding →sieving → pressing in a die → sintering

  • Elastic modulus (40-117 GPa),
    – Enamel: 74GPa
    – Dentin: 21GPa
    – Compact bone: 12-18 GPa

  • Hexagonal rhombic crystal
    – Substitute of OH- by F-, chemical stability
    – Defects and impurities can be characterized by X-ray diffraction (crystalline phase), FTIR (chemical groups)

<ul><li><p><span style="color: rgb(255, 255, 255);">Ca<sub>10</sub>(PO4)<sub>6</sub>(OH)<sub>2</sub>,</span></p></li><li><p><span style="color: rgb(255, 255, 255);">Hard tissue contain 60% HA (mostly carbonate HA), 25% water and 15% organic materials. HA can be converted from coral or animal bone</span></p></li><li><p><span style="color: rgb(255, 255, 255);">Manufacturing:</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">– Ca(NO<sub>3</sub>)<sub>2</sub> + NaH<sub>2</sub>PO<sub>4</sub> → precipitate of HA → drying and filtering → furnace 1150 degrees C → grounding →sieving → pressing in a die → sintering</span></p></li><li><p><span style="color: rgb(255, 255, 255);">Elastic modulus (40-117 GPa),</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">– Enamel: 74GPa</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">– Dentin: 21GPa</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">– Compact bone: 12-18 GPa</span></p></li><li><p><span style="color: rgb(255, 255, 255);">Hexagonal rhombic crystal</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">– Substitute of OH- by F-, chemical stability</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">– Defects and impurities can be characterized by X-ray diffraction (crystalline phase), FTIR (chemical groups)</span></p></li></ul><p></p>
8
New cards

X-Ray Diffraction of HA

knowt flashcard image
9
New cards

Typical FT-IR Spectrum of HA

knowt flashcard image
10
New cards

Factors Influence Degradation Rate of Calcium Phosphate

– Rate of degradation increases as
• Chemical susceptibility to dissolution increases
• Surface area increases
• Crystallinity decreases
• Crystal perfection decreases
• Grain size decreases
• F- substitution decreases


11
New cards

Clinical Application of Calcium Phosphate

• Advantages: bioactive and osteoconductive
• Bioactive bonding mechanism
– differentiated osteoblasts produce a cellular
bone matrix of 3-5 micrometer layer at the surface →
0.05 to 0.2 micrometer → normal bone attached
through a thin epitaxial bonding layer to the bulk
implant
• As dense form:
– small unloaded implants such as in the middle
ear implant,
• As porous form
– granules for filling bony defects in orthopedic
and dental surgery
• As coatings
– with reinforcing metal posts as in dental
materials,
• As fillers in composites

<p><span style="color: rgb(255, 255, 255);">• Advantages: bioactive and osteoconductive</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">• Bioactive bonding mechanism</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">– differentiated osteoblasts produce a cellular</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">bone matrix of 3-5 micrometer layer at the surface →</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">0.05 to 0.2 micrometer → normal bone attached</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">through a thin epitaxial bonding layer to the bulk</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">implant</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">• As dense form:</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">– small unloaded implants such as in the middle</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">ear implant,</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">• As porous form</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">– granules for filling bony defects in orthopedic</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">and dental surgery</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">• As coatings</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">– with reinforcing metal posts as in dental</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">materials,</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">• As fillers in composites</span></p>
12
New cards

Bioactive Glasses and Glass-ceramics

• Specific composition highly reactive surface in aqueous medium
– SiO2 greater than or equal to 60%,
– high Na2O and CaO,
– high CaO/P2O5
• The surface forms a biologically active carbonated HA layer that
provides the bonding interface with tissue. The interfacial strength 
the bulk strength of both the implant and tissue
• Clinical applications
– 45S5, SiO2 45%, Ca/P=5:1
– Ceravital®, middle ear surgery to replace ossicles damaged by chronic infection
– Periodontal defect repair, maintenance of the alveolar ridge for denture wearers
– Toothpaste ingredient against sensitivity

13
New cards

Compositional Dependence (w%) of Bone and Soft Tissue Bonding

The level of bioactivity of a specific material can be related to the time for more than
50% of the interface to be bonded, (t0.5bb) e.g.: (Index of Bioactivity) IB = (100/t0.5bb).

<p><span style="color: transparent;">The level of bioactivity of a specific material can be related to the time for more than</span><br><span style="color: transparent;">50% of the interface to be bonded, (t0.5bb) e.g.: (Index of Bioactivity) IB = (100/t0.5bb).</span></p>
14
New cards

Sequence of Interfacial Reactions Involved in Forming a Bond Between Tissue and Bioactive Glass


knowt flashcard image
15
New cards
<p>Fill out this chart</p>

Fill out this chart

knowt flashcard image
16
New cards

Crystalline Carbon Materials

• Crystalline: diamond, graphite, and fullerene


<p><span style="color: rgb(255, 255, 255);">• Crystalline: diamond, graphite, and fullerene</span></p><p><span style="color: rgb(255, 255, 255);"><br></span></p>
17
New cards

Quasicrystalline Carbon Materials

• Quasicrystalline,
– glassy carbon, extremely inert,
used as electrodes in
electrochemistry or prosthetics
– pyrolytic carbon as implant
surface coating, has high
mechanical strength than glassy
and graphite carbon, excellent
tissue and blood compatibility,
used in heart valves and finger
joint implants

<p><span style="color: rgb(255, 255, 255);">• Quasicrystalline,</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">– glassy carbon, extremely inert,</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">used as electrodes in</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">electrochemistry or prosthetics</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">– pyrolytic carbon as implant</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">surface coating, has high</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">mechanical strength than glassy</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">and graphite carbon, excellent</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">tissue and blood compatibility,</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">used in heart valves and finger</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">joint implants</span></p>
18
New cards

Composite Materials

• Consisting of 2 or more chemically distinct parts in the macro-scale, having a distinct interfaces separating them
• Fiber or particulate composites usually consists of one or more
discontinuous phases (usually stronger, called reinforcing materials)
embedded in a continuous phase (called matrix)
• The property of the composite material depends on
– Properties of each constituent
– Shape of the heterogeneities
– Volume fraction
– Interface
• Natural tissue such as bone and tendon or vessel are composites.


19
New cards

HAPEXTM

• Composite of hydroxyapatite in a polyethylene matrix
• Stiffness similar to cortical bone
• High toughness
• Bone bonding in vivo
• Orbital implant and middle ear implants

<p><span style="color: rgb(255, 255, 255);">• Composite of hydroxyapatite in a polyethylene matrix</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">• Stiffness similar to cortical bone</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">• High toughness</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">• Bone bonding in vivo</span><span style="color: rgb(255, 255, 255);"><br></span><span style="color: rgb(255, 255, 255);">• Orbital implant and middle ear implants</span></p>