Lecture 2.12 - SNB II; Lobes, AMPA/NDMDA, Long term potentiation.,Thalamus

0.0(0)
studied byStudied by 0 people
call kaiCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/22

encourage image

There's no tags or description

Looks like no tags are added yet.

Last updated 8:49 PM on 2/8/26
Name
Mastery
Learn
Test
Matching
Spaced
Call with Kai

No analytics yet

Send a link to your students to track their progress

23 Terms

1
New cards
<p></p>

  • A = No fluid should be in A

  • B = Blood, not CSF, since veins

  • C = CORRECT

    • Includes granulosa

2
New cards

3 Fundamnetal dividison of the vertebrate brain

  1. Hindbrain

    1. Reflexes, non conscious movements (heartbeat)

  2. Midbrain

    1. Coordination

  3. Forebrain

    1. Cerebrum

      1. Decision making, senses

    2. Hypothalamus, thalamus, diencephalon

  • Brain development starts early

<ol><li><p><strong>Hindbrain</strong></p><ol><li><p>Reflexes, non conscious movements (heartbeat)</p></li></ol></li><li><p><strong>Midbrain</strong></p><ol><li><p>Coordination</p></li></ol></li><li><p><strong>Forebrain</strong></p><ol><li><p>Cerebrum</p><ol><li><p>Decision making, senses</p></li></ol></li><li><p>Hypothalamus, thalamus, diencephalon</p></li></ol></li></ol><ul><li><p>Brain development starts early</p></li></ul><p></p>
3
New cards

Same major brain structures found in most vertebrates

  • Same structures, but could have different shapes, sizes, etc

<ul><li><p>Same structures, but could have different shapes, sizes, etc</p></li></ul><p></p>
4
New cards

Brain chart - Parts and Functions summary slide

  • Different parts of the brain have specific functions

<ul><li><p>Different parts of the brain have specific functions</p></li></ul><p></p>
5
New cards

Hindbrain

  • Supports basic functions

  • Contains:

    • Medulla oblongata

      • Breathing, heart rate, blood pressure

      • Autonomic homeostasis

    • Pons

      • Communicator between medulla, cererellum, and cerebrum

      • Sleepy cycles

    • Cerebellum

      • Muscle movement coordination

        • Damage - loss of balance, coordination, language control, attention, sometimes emotion

<ul><li><p>Supports basic functions</p></li><li><p>Contains:</p><ul><li><p><strong>Medulla oblongata</strong></p><ul><li><p>Breathing, heart rate, blood pressure</p></li><li><p>Autonomic homeostasis</p></li></ul></li><li><p><strong>Pons</strong></p><ul><li><p>Communicator between medulla, cererellum, and cerebrum</p></li><li><p>Sleepy cycles</p></li></ul></li><li><p><strong>Cerebellum</strong></p><ul><li><p>Muscle movement coordination</p><ul><li><p>Damage - loss of balance, coordination, language control, attention, sometimes emotion</p></li></ul></li></ul></li></ul></li></ul><p></p>
6
New cards

Forebrain

  • Frontal lobe

    • Anything in front of Central Sulcus

    • Voluntary control of movement

      • Thinking, memory, reasoning, self control

  • Parietal lobe

    • Directly behind frontal lobe / central sulcus

    • Knowing where you are in space (proprioception), receiving and understanding senses

  • Occipital lobe

    • At the very back

    • Vision

  • Temporal lobe

    • Both sides

    • Language, hearing, memory encoding

<ul><li><p><strong>Frontal lobe</strong></p><ul><li><p>Anything in front of <strong>Central Sulcus</strong></p></li><li><p>Voluntary control of movement</p><ul><li><p>Thinking, memory, reasoning, self control</p></li></ul></li></ul></li></ul><p></p><ul><li><p><strong>Parietal lobe</strong></p><ul><li><p>Directly behind frontal lobe / central sulcus</p></li><li><p>Knowing where you are in space (proprioception), receiving and understanding senses</p></li></ul></li><li><p><strong>Occipital lobe</strong></p><ul><li><p>At the very back</p></li><li><p>Vision</p></li></ul></li><li><p><strong>Temporal lobe</strong></p><ul><li><p>Both sides</p></li><li><p>Language, hearing, memory encoding</p></li></ul></li></ul><p></p>
7
New cards

Cerebrum cross section

  • Split in half - 2 hemispheres, right and left

  • White matter in middle = Corpus Callosum

    • Contralateral senses - lots of crossover at corpus callosum

<ul><li><p>Split in half - 2 hemispheres, right and left</p></li><li><p>White matter in middle = <strong><mark data-color="yellow" style="background-color: yellow; color: inherit;">Corpus Callosum</mark></strong></p><ul><li><p>Contralateral senses - lots of crossover at corpus callosum</p></li></ul></li></ul><p></p>
8
New cards

Functional Map of Brain

  • Lesioning - touch/destroy/electrical impulse/brain surgery - parts of brain

<ul><li><p>Lesioning - touch/destroy/electrical impulse/brain surgery - parts of brain</p></li></ul><p></p>
9
New cards

Motor areas of cerebrum - Primary motor cortex

  • Primary motor cortex

    • Controls voluntary movements of skeletal muscle

      • Stimulation of different regions of PMC leads to movement

      • Damage to PMC leads to paralysis or loss of voluntary movements but reflex remain

      • Damage to PMC usually results in permanent loss of these movements

    • In Frontal Lobe

<ul><li><p><strong>Primary motor cortex</strong></p><ul><li><p>Controls <span style="color: red;"><span>voluntary movements</span></span> of skeletal muscle</p><ul><li><p>Stimulation of different regions of PMC leads to movement</p></li><li><p><strong>Damage</strong> to PMC leads to paralysis or loss of voluntary movements but reflex remain</p></li><li><p>Damage to PMC usually results in <strong>permanent</strong> loss of these movements</p></li></ul></li><li><p>In Frontal Lobe</p></li></ul></li></ul><p></p>
10
New cards

Motor areas of cerebrum - Premotor Cortex

  • Coordinates movements of groups muscles

    • PMC causes movements, PC controls them

  • Damage

    • Loss of skill

    • Can be relearned

  • In Frontal Lobe

<ul><li><p>Coordinates movements of groups muscles</p><ul><li><p>PMC causes movements, PC controls them</p></li></ul></li><li><p>Damage</p><ul><li><p>Loss of skill</p></li><li><p>Can be relearned</p></li></ul></li><li><p>In Frontal Lobe</p></li></ul><p></p>
11
New cards

Sensory areas of cerebrum - Somatosensory cortex

  • Behind central sulcus

  • Primary input from sensory receptors in skin and muscle

    • Touch information from skin and muscles

      • Pain, temperature, vibration, proprioception

        • Not eyes, ears, taste

  • Damage leads to loss of sensation

  • In Parietal Lobe

<ul><li><p>Behind central sulcus</p></li><li><p>Primary input from sensory receptors in skin and muscle</p><ul><li><p>Touch information from skin and muscles</p><ul><li><p>Pain, temperature, vibration, proprioception</p><ul><li><p>Not eyes, ears, taste</p></li></ul></li></ul></li></ul></li><li><p>Damage leads to loss of sensation</p></li><li><p>In Parietal Lobe</p></li></ul><p></p>
12
New cards

Sensory areas of cerebrum - Somatosensory association area

  • Adjacent to primary somatosensory cortex

  • Interpretation of sensations

    • Integrating sensations with memory

  • Damage:

    • Loss of ID of sensations

  • In Parietal Lobe

13
New cards

Visual areas of the cerebrum - Occipital lobe

  • Primary visual cortex

    • Receives input

      • Primary input from optic tracts

  • Visual association area

    • Makes sense of what is seen

<ul><li><p><strong>Primary visual cortex</strong></p><ul><li><p>Receives input</p><ul><li><p>Primary input from optic tracts</p></li></ul></li></ul></li><li><p><strong>Visual association area</strong></p><ul><li><p>Makes sense of what is seen</p></li></ul></li></ul><p></p>
14
New cards

Temporal lobe parts

  • Wernicke’s area - speech comprehension

  • Broca’s area - speech production

  • Olfactory cortex - sense of smell

  • Auditory cortex

  • Limbic association areas - emotions, memory, motivation

<ul><li><p>Wernicke’s area - speech comprehension</p></li><li><p>Broca’s area - speech production</p></li><li><p>Olfactory cortex - sense of smell</p></li><li><p>Auditory cortex</p></li><li><p><strong>Limbic association areas</strong> - emotions, memory, motivation</p></li></ul><p></p>
15
New cards

Motor and Sensory Homunculus - on both sides of brain

  • Distribution of amount of brain dedicated to certain movements/senses

    • Vary based on importance - more area on brain = more important

      • Ex: lots dedicated to face and fingers, little to arms and hips

  • Motor homunculus

  • Sensory homunculus

<ul><li><p>Distribution of amount of brain dedicated to certain movements/senses</p><ul><li><p>Vary based on importance - more area on brain = more important</p><ul><li><p>Ex: lots dedicated to face and fingers, little to arms and hips</p></li></ul></li></ul></li><li><p><mark data-color="red" style="background-color: red; color: inherit;">Motor</mark> homunculus</p></li><li><p><mark data-color="blue" style="background-color: blue; color: inherit;">Sensory</mark> homunculus</p></li></ul><p></p>
16
New cards

Limbic system (lizard brain)

  • Inside the brain

    • Cingulate gyrus

      • Regulating emotions and pain

    • Fornix

      • Connector between portions of limbic system

      • Might have relation to episodic/short-term memory

    • Thalamus

      • Relay station - area that connects sensory organs to somatosensory organs

      • Receives senses, filters it, sends it out to area in brain for interpretation

      • All motor and sensory signals (except smell) pass through this structure

    • Hippocampus

      • Memory

    • Amygdala

      • Fear, aggression, emotions

    • Hypothalamus

      • Hormones

    • Olfactory bulb

      • Sense of smells

<ul><li><p>Inside the brain</p><ul><li><p><strong>Cingulate gyrus</strong></p><ul><li><p>Regulating emotions and pain</p></li></ul></li><li><p><strong>Fornix</strong></p><ul><li><p>Connector between portions of limbic system</p></li><li><p>Might have relation to episodic/short-term memory</p></li></ul></li><li><p><strong>Thalamus</strong></p><ul><li><p><span style="color: blue;">Relay station</span> - area that connects sensory organs to somatosensory organs</p></li><li><p>Receives senses, filters it, sends it out to area in brain for interpretation</p></li><li><p>All motor and sensory signals (except smell) pass through this structure</p></li></ul></li><li><p><strong>Hippocampus</strong></p><ul><li><p>Memory</p></li></ul></li><li><p><strong>Amygdala</strong></p><ul><li><p>Fear, aggression, emotions</p></li></ul></li><li><p><strong>Hypothalamus</strong></p><ul><li><p>Hormones</p></li></ul></li><li><p><strong>Olfactory bulb</strong></p><ul><li><p>Sense of smells</p></li></ul></li></ul></li></ul><p></p>
17
New cards

Diecephalon structures - Hypo/thalamus

  • Thalamus

    • Filters/sorts inputs, routes information

  • Hypothalamus

    • Homeostatic functions (negative feedback)

    • Regulates Pituitary gland

    • Hypothalamus → Pituitary → Other glands → Body

      • Hypothalamus receives input - body states (temperature, blood glucose, …) or brain states (amygdala - fear, stress ; other emotional state…)

      • Hypothalamus sends output to pituitary gland

      • Based on particular input, pituitary gland releases hormones

<ul><li><p><strong>Thalamus</strong></p><ul><li><p>Filters/sorts inputs, routes information</p></li></ul></li></ul><ul><li><p><strong>Hypothalamus</strong></p><ul><li><p>Homeostatic functions (negative feedback)</p></li><li><p>Regulates <strong>Pituitary gland</strong></p></li><li><p><span style="color: blue;">Hypothalamus → Pituitary → Other glands → Body</span></p><ul><li><p><u>Hypothalamus receives input</u> - body states (temperature, blood glucose, …) or brain states (amygdala - fear, stress ; other emotional state…)</p></li><li><p><u>Hypothalamus sends output to pituitary gland</u></p></li><li><p><u>Based on particular input, pituitary gland releases hormones</u></p></li></ul></li></ul></li></ul><p></p>
18
New cards

Hippocampus - memory

  • Not very big in humans

  • Long term potentiation - long term changes in memory = Synaptic plasticity

    • Causes long-lasting increases in signal transmission between neurons

    • Occurs at dendritic spine synapses of hippocampal neurons

    • Mechanism for tracking repetitive activity (salient stimuli)

<ul><li><p>Not very big in humans</p></li><li><p><strong><mark data-color="blue" style="background-color: blue; color: inherit;">Long term potentiation</mark></strong> - <mark data-color="blue" style="background-color: blue; color: inherit;">long term changes in memory = </mark><strong><mark data-color="blue" style="background-color: blue; color: inherit;">Synaptic plasticity</mark></strong></p><ul><li><p>Causes long-lasting increases in signal transmission between neurons</p></li><li><p>Occurs at dendritic spine synapses of hippocampal neurons</p></li><li><p>Mechanism for tracking repetitive activity (salient stimuli)</p></li></ul></li></ul><p></p>
19
New cards

Long-term potentiation

  • LTP = Repeated stimulus over and over

  • GRADED potentials, not action potentials

  • LTP vs Low-frequency stimulation

    • LTP = bigger graded potentials = more likely to have an action potential

  • More receptors

<ul><li><p>LTP = Repeated stimulus over and over</p></li><li><p>GRADED potentials, not action potentials</p></li><li><p>LTP vs Low-frequency stimulation</p><ul><li><p>LTP = bigger graded potentials = more likely to have an action potential</p></li></ul></li><li><p>More receptors</p></li></ul><p></p>
20
New cards

LOW FREQUENCY - Activity-dependent changes in dendritic spine synapses

  • Pre-synaptic cells NT = usually glutamate

    • NT for AMPA receptor and NMDA receptor

  • AMPA

    • Ligand-gated sodium channel

      • Receives glutamate, opens, allows Na+ in, Depolarization

      • AP more likely to occur

  • NDMDA

    • Ligand-gated, Receives Glutamate

      • But Mg2+ clogs pores of receptor, doesn’t allow Ca2+ to pass through in LOW FREQUENCY

<ul><li><p>Pre-synaptic cells NT = usually <strong>glutamate</strong></p><ul><li><p>NT for AMPA receptor and NMDA receptor</p></li></ul></li><li><p><mark data-color="red" style="background-color: red; color: inherit;">AMPA</mark></p><ul><li><p>Ligand-gated sodium channel</p><ul><li><p>Receives glutamate, opens, allows Na+ in, Depolarization</p></li><li><p>AP more likely to occur</p></li></ul></li></ul></li><li><p><mark data-color="purple" style="background-color: purple; color: inherit;">NDMDA</mark></p><ul><li><p>Ligand-gated, Receives Glutamate</p><ul><li><p>But Mg2+ clogs pores of receptor, doesn’t allow Ca2+ to pass through in LOW FREQUENCY</p></li></ul></li></ul></li></ul><p></p>
21
New cards

HIGH FREQUENCY - Activity-dependent changes in dendritic spine synapses

  • AMPA

    • Still receives ligand (glutamate), opens, allows Na+ in, greater Depolarization

    • Greater depolarization ejects Mg2+ from the NMDA receptor

  • NMDA

    • No more Mg2+ blocking

    • Ligand once again binds to receptor

    • No Mg2+ present this time, so Ca2+ can pass through

    • Ca2+ affects CAM-MK2 → phosphorylates AMPA receptor, opening it more (more Na+ in, more depolarization)

      • CAM-MK2 → leads to more active AMPA receptors and more AMPA insertion

    • PKC exhibits paracrine signaling, causing pre-synaptic neuron to release more glutamate = more +

  • More Na+ enters which causes Ca2+ enters = more positive = POSITIVE FEEDBACK

  • AMPA phosphorylated = More + = more AMPA receptors = More + = POSITIVE FEEDBACK

  • Thought to be involved in memory production

<ul><li><p><mark data-color="red" style="background-color: red; color: inherit;">AMPA</mark></p><ul><li><p>Still receives ligand (glutamate), opens, allows Na+ in, greater Depolarization</p></li><li><p>Greater depolarization ejects Mg2+ from the NMDA receptor</p></li></ul></li><li><p><mark data-color="blue" style="background-color: blue; color: inherit;">NMDA</mark> </p><ul><li><p>No more Mg2+ blocking</p></li><li><p>Ligand once again binds to receptor</p></li><li><p>No Mg2+ present this time, so Ca2+ can pass through</p></li><li><p>Ca2+ affects <strong><mark data-color="yellow" style="background-color: yellow; color: inherit;">CAM-MK2</mark></strong> → phosphorylates <mark data-color="red" style="background-color: red; color: inherit;">AMPA</mark> receptor, opening it more (more Na+ in, more depolarization)</p><ul><li><p>CAM-MK2 → leads to more active <mark data-color="red" style="background-color: red; color: inherit;">AMPA</mark> receptors and more <mark data-color="red" style="background-color: red; color: inherit;">AMPA</mark> insertion</p></li></ul></li><li><p><strong><mark data-color="yellow" style="background-color: yellow; color: inherit;">PKC</mark></strong> exhibits paracrine signaling, causing pre-synaptic neuron to release more glutamate = more +</p></li></ul></li><li><p><mark data-color="purple" style="background-color: purple; color: inherit;">More Na+ enters which causes Ca2+ enters = more positive = POSITIVE FEEDBACK</mark></p></li><li><p><mark data-color="purple" style="background-color: purple; color: inherit;">AMPA phosphorylated = More + = more AMPA receptors = More + = POSITIVE FEEDBACK</mark></p></li><li><p><strong><mark data-color="#ffffff" style="background-color: rgb(255, 255, 255); color: inherit;">Thought to be involved in memory production</mark></strong></p></li></ul><p></p>
22
New cards

Hypothalamus

  • Helps maintain ion and water balance

  • Regulates body temp

    • Thyroid - metabolism

  • Regulates food intake

  • Involved in the stress response

    • HPA (hypothalamus, pituitary, adrenal) axis

  • Helps maintain ion and water balance

  • Regulates circadian rhythms

23
New cards
<p>Circadian rhythms</p>

Circadian rhythms

  • Daily behavioral and physiological cycling and adaption to environmental cues

    • Environmental cue - usually Sun

    • Leads to input pathway

    • Behavioral rhythms

      • Persist in the absence of environmental cues

  • What are controlled by circadian rhythm?

    • Cortisol levels

    • Blood pressure

    • Body temperature

    • Reaction time

    • Blod pressure

<ul><li><p>Daily behavioral and physiological cycling and adaption to environmental cues</p><ul><li><p>Environmental cue - usually Sun</p></li><li><p>Leads to input pathway</p></li><li><p>Behavioral rhythms</p><ul><li><p>Persist in the absence of environmental cues</p></li></ul></li></ul></li><li><p>What are controlled by circadian rhythm?</p><ul><li><p>Cortisol levels</p></li><li><p>Blood pressure</p></li><li><p>Body temperature</p></li><li><p>Reaction time</p></li><li><p>Blod pressure</p></li></ul></li></ul><p></p>