1/32
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
∫ k dx = ?
kx + C
where k is a constant
∫ xn dx = ?
Where (n ≠ −1)
[x(n+1) / (n+1)] + C.
∫ (1/x) dx = ?
ln|x| + C.
∫ ex dx = ?
ex + C.
∫ ax dx = ?
Where (a > 0, a ≠ 1)
[ax / ln(a)] + C.
∫ sin(x) dx = ?
cos(x) + C.
∫ cos(x) dx = ?
-sin(x) + C.
∫ sec2(x) dx = ?
tan(x) + C.
∫ csc2(x) dx = ?
−cot(x) + C.
∫ sec(x) tan(x) dx = ?
sec(x) + C.
∫ csc(x) cot(x) dx = ?
−csc(x) + C.
∫ tan(x) dx = ?
ln|sec(x)| + C.
∫ cot(x) dx = ?
ln|sin(x)| + C.
∫ sec(x) dx = ?
ln|sec(x) + tan(x)| + C.
∫ csc(x) dx = ?
−ln|csc(x) + cot(x)| + C.
∫ sinh(x) dx = ?
cosh(x) + C.
∫ cosh(x) dx = ?
sinh(x) + C.
∫ [1 / √(a2 − x2)] dx = ?
arcsin(x/a) + C
Where (a > 0)
∫ (1 / (a2 + x2)) dx = ?
(1/a) arctan(x/a) + C
Where (a > 0)
∫ [1 / (x√{x2 − a2})] dx = ?
(1/a) arcsec|x/a| + C
Where (a > 0)
∫ [1 / √(a2 + x2)] dx
(1/a) arcsinh(x/a) + C
Where (a > 0)
∫ [1 / √(x2 − a2)] dx
arccosh(x/a) + C
Where (x > a > 0)
Integration by Parts:
∫ udv = ?
uv - ∫vdu
Fundamental Trig Identities:
cos2x + sin2x = ?
1
Fundamental Trig Identities:
1 + tan2x = ?
sec2x
Fundamental Trig Identities:
1 + cot2x = ?
csc2x
Fundamental Trig Identities:
cos2x = ?
(1/2) * (1 + cos[2x])
Fundamental Trig Identites:
sin2x = ?
(1/2) * (1 - cos[2x])
Trig Substitution:
a² - x²
x = a sinθ
dx = a cosθ dθ
Trig Substitution:
a² + x²
x = a tanθ
dx = a sec²θ dθ
Trig Substitution:
x² - a²
x = a secθ
dx = a secθtanθ dθ
Partial Fraction Decomposition Criteria (3)
rational function (polynomial / polynomial)
smaller degree in the numerator
denominator must factor
Partial Fraction Cases
All depend on the denominator
Unique Linear Factors
(x² + 2x - 3) → (a / (x + 3)) + (b / (x - 1))
Nonlinear Factors
(x - 3)(x² + 4) → (a / (x - 3)) + ((bx + c) / (x² + 4))
Repeating Factors
(x - 3)³ → (a / (x - 3)) + (b / (x - 3)²) + (c / (x - 3)³)