Integration Formulas

0.0(0)
studied byStudied by 2 people
GameKnowt Play
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/32

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

33 Terms

1
New cards

∫ k dx = ?

kx + C

where k is a constant

2
New cards

∫ xn dx = ?
Where (n ≠ −1)

[x(n+1) / (n+1)] + C.

3
New cards

∫ (1/x) dx = ?

ln|x| + C.

4
New cards

∫ ex dx = ?

ex + C.

5
New cards

∫ ax dx = ?
Where (a > 0, a ≠ 1)

[ax / ln(a)] + C.

6
New cards

∫ sin(x) dx = ?

cos(x) + C.

7
New cards

∫ cos(x) dx = ?

-sin(x) + C.

8
New cards

∫ sec2(x) dx = ?

tan(x) + C.

9
New cards

∫ csc2(x) dx = ?

−cot(x) + C.

10
New cards

∫ sec(x) tan(x) dx = ?

sec(x) + C.

11
New cards

∫ csc(x) cot(x) dx = ?

−csc(x) + C.

12
New cards

∫ tan(x) dx = ?

ln|sec(x)| + C.

13
New cards

∫ cot(x) dx = ?

ln|sin(x)| + C.

14
New cards

∫ sec(x) dx = ?

ln|sec(x) + tan(x)| + C.

15
New cards

∫ csc(x) dx = ?

−ln|csc(x) + cot(x)| + C.

16
New cards

∫ sinh(x) dx = ?

cosh(x) + C.

17
New cards

∫ cosh(x) dx = ?

sinh(x) + C.

18
New cards

∫ [1 / √(a2 − x2)] dx = ?

arcsin(x/a) + C

Where (a > 0)

19
New cards

∫ (1 / (a2 + x2)) dx = ?

(1/a) arctan(x/a) + C

Where (a > 0)

20
New cards

∫ [1 / (x√{x2 − a2})] dx = ?

(1/a) arcsec|x/a| + C

Where (a > 0)

21
New cards

∫ [1 / √(a2 + x2)] dx

(1/a) arcsinh(x/a) + C

Where (a > 0)

22
New cards

∫ [1 / √(x2 − a2)] dx

arccosh(x/a) + C

Where (x > a > 0)

23
New cards

Integration by Parts:

∫ udv = ?

uv - ∫vdu

24
New cards

Fundamental Trig Identities:

cos2x + sin2x = ?

1

25
New cards

Fundamental Trig Identities:

1 + tan2x = ?

sec2x

26
New cards

Fundamental Trig Identities:

1 + cot2x = ?

csc2x

27
New cards

Fundamental Trig Identities:

cos2x = ?

(1/2) * (1 + cos[2x])

28
New cards

Fundamental Trig Identites:

sin2x = ?

(1/2) * (1 - cos[2x])

29
New cards

Trig Substitution:

a² - x²

x = a sinθ

dx = a cosθ dθ

30
New cards

Trig Substitution:

a² + x²

x = a tanθ

dx = a sec²θ dθ

31
New cards

Trig Substitution:

x² - a²

x = a secθ

dx = a secθtanθ dθ

32
New cards

Partial Fraction Decomposition Criteria (3)

  1. rational function (polynomial / polynomial)

  2. smaller degree in the numerator

  3. denominator must factor

33
New cards

Partial Fraction Cases

All depend on the denominator

  1. Unique Linear Factors

    (x² + 2x - 3) → (a / (x + 3)) + (b / (x - 1))

  2. Nonlinear Factors

    (x - 3)(x² + 4) → (a / (x - 3)) + ((bx + c) / (x² + 4))

  3. Repeating Factors

    (x - 3)³ → (a / (x - 3)) + (b / (x - 3)²) + (c / (x - 3)³)