sin'(x)=
cos(x)
cos'(x)=
-sin(x)
tan'(x)=
sec^2(x)
cot'(x)
-cscĀ²(x)
sec'(x)
sec(x)tan(x)
csc'(x)
-csc(x)cot(x)
dy/dx of arcsin(x)
1/ā(1-xĀ²)
dy/dx of arccos(x)
-1/ā(1-xĀ²)
dy/dx of arctan(x)
1/(1+xĀ²)
Take the derivative (d/dx) of y = ln(u)
dy/dx = 1/u * du/dx, where u is a function of x.
d/dx of y = e^u
dy/dx = e^u (du/dx)