1/52
A comprehensive set of vocabulary flashcards summarizing key trigonometric identities, reciprocal and quotient relations, cofunction and odd-even properties, Pythagorean, sum/difference, and double-angle formulas, along with triangle laws and area formulas.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
sec²θ
Equals 1 + tan²θ (Pythagorean identity).
tan²θ in terms of sec²θ
tan²θ = sec²θ − 1.
tanθ in terms of sin and cos
tanθ = sinθ / cosθ.
cotθ in terms of sin and cos
cotθ = cosθ / sinθ.
sin²θ in terms of cos²θ
sin²θ = 1 − cos²θ.
cos²θ in terms of sin²θ
cos²θ = 1 − sin²θ.
cot²θ in terms of csc²θ
cot²θ = csc²θ − 1.
csc²θ in terms of cot²θ
csc²θ = 1 + cot²θ.
sinθ reciprocal identity
sinθ = 1 / cscθ.
cosθ reciprocal identity
cosθ = 1 / secθ.
secθ reciprocal identity
secθ = 1 / cosθ.
cscθ reciprocal identity
cscθ = 1 / sinθ.
cotθ reciprocal identity
cotθ = 1 / tanθ.
tanθ quotient identity
tanθ = sinθ / cosθ.
cotθ quotient identity
cotθ = cosθ / sinθ.
cos(−θ)
cos(−θ) = cosθ (even function).
sin(−θ)
sin(−θ) = −sinθ (odd function).
csc(−θ)
csc(−θ) = −cscθ (odd function).
tan(−θ)
tan(−θ) = −tanθ (odd function).
cot(−θ)
cot(−θ) = −cotθ (odd function).
Only positive for cos and sec when θ → −θ
cos(−θ) and sec(−θ) remain positive, others change sign.
sinθ cofunction identity
sinθ = cos(π/2 − θ).
cosθ cofunction identity
cosθ = sin(π/2 − θ).
tanθ cofunction identity
tanθ = cot(π/2 − θ).
cscθ cofunction identity
cscθ = sec(π/2 − θ).
cotθ cofunction identity
cotθ = tan(π/2 − θ).
sin²θ + cos²θ
Equals 1 (fundamental Pythagorean identity).
1 + tan²θ
Equals sec²θ (Pythagorean identity).
1 + cot²θ
Equals csc²θ (Pythagorean identity).
sin(A + B)
sinA cosB + cosA sinB (sum identity).
sin(A − B)
sinA cosB − cosA sinB (difference identity).
cos(A + B)
cosA cosB − sinA sinB (sum identity).
cos(A − B)
cosA cosB + sinA sinB (difference identity).
sin 2θ
2 sinθ cosθ (double-angle identity).
cos 2θ (primary form)
cos²θ − sin²θ.
cos 2θ (in terms of cos)
2 cos²θ − 1.
cos 2θ (in terms of sin)
1 − 2 sin²θ.
tan 2θ
2 tanθ / (1 − tan²θ) (double-angle identity).
sec²α − tan²α
Equals 1.
csc²α − cot²α
Equals 1.
(secα + tanα)(secα − tanα)
Equals 1 (difference of squares).
(cscα + cotα)(cscα − cotα)
Equals 1 (difference of squares).
If (secα + tanα) = μ
Then (secα − tanα) = 1/μ.
If (cscα − cotα) = ω
Then (cscα + cotα) = 1/ω.
sin(π/2 − x)
Equals cos x.
cos(π/2 − x)
Equals sin x.
tan(π/2 − x)
Equals cot x.
Slope of a line
tanθ = RISE / RUN = opposite / adjacent.
SOH CAH TOA
Mnemonic: sin = opp/hyp, cos = adj/hyp, tan = opp/adj.
Law of Sines
a/sinA = b/sinB = c/sinC.
Law of Cosines
c² = a² + b² − 2ab cosC (and cyclic variants).
Heron’s Formula
Area = √[s(s−a)(s−b)(s−c)], where s = (a + b + c)/2.
Area of a triangle using sine
Area = ½ ab sinC.