Trig – Tricks with TEA and Toast (T⁴)

0.0(0)
studied byStudied by 0 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/52

flashcard set

Earn XP

Description and Tags

A comprehensive set of vocabulary flashcards summarizing key trigonometric identities, reciprocal and quotient relations, cofunction and odd-even properties, Pythagorean, sum/difference, and double-angle formulas, along with triangle laws and area formulas.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

53 Terms

1
New cards

sec²θ

Equals 1 + tan²θ (Pythagorean identity).

2
New cards

tan²θ in terms of sec²θ

tan²θ = sec²θ − 1.

3
New cards

tanθ in terms of sin and cos

tanθ = sinθ / cosθ.

4
New cards

cotθ in terms of sin and cos

cotθ = cosθ / sinθ.

5
New cards

sin²θ in terms of cos²θ

sin²θ = 1 − cos²θ.

6
New cards

cos²θ in terms of sin²θ

cos²θ = 1 − sin²θ.

7
New cards

cot²θ in terms of csc²θ

cot²θ = csc²θ − 1.

8
New cards

csc²θ in terms of cot²θ

csc²θ = 1 + cot²θ.

9
New cards

sinθ reciprocal identity

sinθ = 1 / cscθ.

10
New cards

cosθ reciprocal identity

cosθ = 1 / secθ.

11
New cards

secθ reciprocal identity

secθ = 1 / cosθ.

12
New cards

cscθ reciprocal identity

cscθ = 1 / sinθ.

13
New cards

cotθ reciprocal identity

cotθ = 1 / tanθ.

14
New cards

tanθ quotient identity

tanθ = sinθ / cosθ.

15
New cards

cotθ quotient identity

cotθ = cosθ / sinθ.

16
New cards

cos(−θ)

cos(−θ) = cosθ (even function).

17
New cards

sin(−θ)

sin(−θ) = −sinθ (odd function).

18
New cards

csc(−θ)

csc(−θ) = −cscθ (odd function).

19
New cards

tan(−θ)

tan(−θ) = −tanθ (odd function).

20
New cards

cot(−θ)

cot(−θ) = −cotθ (odd function).

21
New cards

Only positive for cos and sec when θ → −θ

cos(−θ) and sec(−θ) remain positive, others change sign.

22
New cards

sinθ cofunction identity

sinθ = cos(π/2 − θ).

23
New cards

cosθ cofunction identity

cosθ = sin(π/2 − θ).

24
New cards

tanθ cofunction identity

tanθ = cot(π/2 − θ).

25
New cards

cscθ cofunction identity

cscθ = sec(π/2 − θ).

26
New cards

cotθ cofunction identity

cotθ = tan(π/2 − θ).

27
New cards

sin²θ + cos²θ

Equals 1 (fundamental Pythagorean identity).

28
New cards

1 + tan²θ

Equals sec²θ (Pythagorean identity).

29
New cards

1 + cot²θ

Equals csc²θ (Pythagorean identity).

30
New cards

sin(A + B)

sinA cosB + cosA sinB (sum identity).

31
New cards

sin(A − B)

sinA cosB − cosA sinB (difference identity).

32
New cards

cos(A + B)

cosA cosB − sinA sinB (sum identity).

33
New cards

cos(A − B)

cosA cosB + sinA sinB (difference identity).

34
New cards

sin 2θ

2 sinθ cosθ (double-angle identity).

35
New cards

cos 2θ (primary form)

cos²θ − sin²θ.

36
New cards

cos 2θ (in terms of cos)

2 cos²θ − 1.

37
New cards

cos 2θ (in terms of sin)

1 − 2 sin²θ.

38
New cards

tan 2θ

2 tanθ / (1 − tan²θ) (double-angle identity).

39
New cards

sec²α − tan²α

Equals 1.

40
New cards

csc²α − cot²α

Equals 1.

41
New cards

(secα + tanα)(secα − tanα)

Equals 1 (difference of squares).

42
New cards

(cscα + cotα)(cscα − cotα)

Equals 1 (difference of squares).

43
New cards

If (secα + tanα) = μ

Then (secα − tanα) = 1/μ.

44
New cards

If (cscα − cotα) = ω

Then (cscα + cotα) = 1/ω.

45
New cards

sin(π/2 − x)

Equals cos x.

46
New cards

cos(π/2 − x)

Equals sin x.

47
New cards

tan(π/2 − x)

Equals cot x.

48
New cards

Slope of a line

tanθ = RISE / RUN = opposite / adjacent.

49
New cards

SOH CAH TOA

Mnemonic: sin = opp/hyp, cos = adj/hyp, tan = opp/adj.

50
New cards

Law of Sines

a/sinA = b/sinB = c/sinC.

51
New cards

Law of Cosines

c² = a² + b² − 2ab cosC (and cyclic variants).

52
New cards

Heron’s Formula

Area = √[s(s−a)(s−b)(s−c)], where s = (a + b + c)/2.

53
New cards

Area of a triangle using sine

Area = ½ ab sinC.