1/9
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
main problem with NHST
only produces a binary decision
- lacks important context; does not indicate magnitude of difference between x̅ and μ
effect size (Cohen's d)
magnitude of difference between what we observed in our sample and what we expected from the population
- estimate of the standardized difference between x̅ and μ
(.2 or .3 = small; .5 = medium; .8 = large)
confidence interval
range of values within which a population parameter is estimated to lie (interval estimate)
- tells us about precision of our estimate (the narrower, the more precise)
- only constructed for two-tailed tests
power
indicates how sensitive our test is to rejecting the null hypothesis
(e.g., if 1 - β = 1, there is no chance of a type II error)
type 1 error (false positive)
rejection of a true null hypothesis; alpha
type 2 error (false negative)
failing to reject a false null hypothesis; beta
research design
refers to how research is conducted; broad term to reflect all diff decisions made along the process
of all the things that affect power, which factor can we control as researchers?
the sample size
t-metric
uses an estimate of population variance (standard deviation), rather than population variance itself
- applied to a family of theoretical distributions
degrees of freedom (N - 1)
number of independent pieces of info remaining after estimating one or more parameters
- reduces the bias of our estimation of variance