6. Bodový versus intervalový odhad

0.0(0)
studied byStudied by 0 people
0.0(0)
call with kaiCall with Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/8

encourage image

There's no tags or description

Looks like no tags are added yet.

Last updated 12:10 PM on 1/30/26
Name
Mastery
Learn
Test
Matching
Spaced
Call with Kai

No analytics yet

Send a link to your students to track their progress

9 Terms

1
New cards

K čemu odhady slouží?

Máme naměřená data (vzorek) a chceme na základě tohoto vzorku z celkové populace dozvědět něco o té celé populaci.

2
New cards

Co je bodový odhad?

  • Hledám jedno konkrétní číslo, které nejlépe reprezentuje neznámý parametr populace (průměrná výška studentů)

  • Je rychlý a snadno pochopitelný a interpretovatelný

  • Je nespolehlivý (jiný vzorek = jiný výsledek) a nenese žádnou informaci o přesnosti (blíží se pravdě nebo jsem kompletně mimo?)

3
New cards

K čemu bodový odhad například použiju?

  • Chci znát střední hodnotu \mu → Použiji průměr \bar{x}

  • Chci znát variabilitu populace \sigma^2 → Použiju rozptyl

  • Mám v datech chyby, ale chci střední hodnotu → použiju medián

4
New cards

Co je intevalový odhad?

  • Hledám interval, ve kterém s určitou pravděpodobností pokrývá hledaný parametr populace.

    • Určitá pravděpodobnost → Námi vybraná hladina spolehlivosti → většinou 95%

      • neříká nic o výsledcích! Odhaduje parametry populace

  • interval spolehlivosti má vzorec:

<ul><li><p>Hledám interval, ve kterém s určitou pravděpodobností pokrývá hledaný parametr populace.</p><ul><li><p>Určitá pravděpodobnost → Námi vybraná hladina spolehlivosti → většinou 95% </p><ul><li><p>neříká nic o výsledcích! Odhaduje parametry populace </p></li></ul></li></ul></li><li><p>interval spolehlivosti má vzorec: </p></li></ul><p></p>
5
New cards

Předpoklady pro intervalový odhad jsou?

  1. Náhodný výběr vzorku z dat

  • musí být reprezentativní a náhodný

  1. Normalita dat

  • Pokud není normální rozdělení, použiji transformaci například.

  1. Nezávislost pozorování → měření se neovlivňují navzájem

  2. Konstantní rozptyl

  • pokud není konstantní, data mají odlehlé hodnoty (použiji robustní metody)

6
New cards

Klíčové pojmy:

  1. Hladina spolehlivosti \(\alpha - 1)

  2. Standartní chyba - SEM

  3. Kritická hodnota (t nebo z)

7
New cards

Co je hladina spolehlivosti?

  • Jak moc si chceme být jisti, že v intervalu bude správná hodnota

  • Typicky 95% → zbylých 5% je hladina významnosti alfa

  • Větší hladina spolehlivosti => větší interval

8
New cards

Co je standartní chyba SEM?

  • Měří jak moc je odhad intervalu přesný

  • Čím větší vzorek tím menší chyba

  • Měří jak by se lišily průměry, pokud by měření probíhalo opakovaně

9
New cards

Co je kritická hodnota (t nebo z)?

  • Číslo, kterým se násobí chyba, aby se dosáhlo hladiny spolehlivosti 95%

  • Z-hodnota → předem daná (95% interval spolehlivosti → Z=1,96)

    • Pro velké vzorky

    • Znám rozptyl

  • T-hodnota:

    • Malý vzorek dat

    • neznám rozptyl

    • závisí na df → stupeň volnosti df = n - 1