1/80
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Distance Formula
d=square root (x2 - x1)²+(y2 - y1)²
Midpoint Formula
M = ((x1 + x2)/2 , ((y1 + y2))/2
30-60-90 Triangle Formula
1:sqrt3:2
45-45-90
1:1:sqrt2
Pole Trick
c=ab/a+b
Area of a triangle
A=bh/2
Area of a trapezoid
A=1/2 h(b1+b2)
Area of a parallelogram
A=bh
Area of a regular polygon
A=1/2 ap
Pizza cuts
(n²+n+2)/2
Distance from (x_1,y_1) to Ax+By+C=0
d=|Ax1+By1+C|/sqrt (A²+B²)
Area of an equilateral triangle
A=(s² sqrt3)/4
Area of a rhombus
A=1/2 d1 d2 (d is diagonal)
Area of a circle
A=πr²
Area of a sector
A= arc/360 x πr²
Diagonals from 1 point
n-3
Total diagonals
n(n-3)/2
Area of a triangle given the sides (Herron’s)
s=(a+b+c)/2
A = sqrt s(s-a)(s-b)(s-c)
Distance from (x_1,y_1,z_1) to Ax + By + Cz + D=0
d = |Ax1+By1+Cz1+D|/sqrt A²+B²+C²
Cyclical Quadrilateral (Brahmagupta’s)
s=(a+b+c+d)/2
A= sqrt (s-a)(s-b)(s-c)(s-d)
Space Diagonal
sqrt L²+W²+H²
Area of a triangle given coordinates of points
1/2|sum of downhill diagonal products-sum of uphill diagonal products|
Volume of a sphere
V=4/3 πr³
Volume of a prism
V=Bh
Volume of a cylinder
V=πr²h
Volume of a pyramid
V=1/3 Bh
Volume of a cone
V=1/3πr²h
Surface Area of a sphere
SA=4πr²
Surface Area of a prism
SA=2B+ph
Surface Area of a cylinder
SA=2πr²+2πrh
Surface Area of a pyramid
SA=B+1/2 pl
Surface Area of a cone
SA= πr²+πrl
Length of a median (a/b/c sides; c contains median)
median = sqrt a²/2 +b²/2 - c²/4
Altitude from a right angle
seg 1/altitude = altitude/seg 2 | hyp/leg = leg/seg adj hyp
Given the angle bisector
a/d = b/e
equation of a circle
(x-h)²+(y-k)²=r²
Area of a circle given perpendicular chords
A=π x ((a²+b²+c²+d²)/4)
Probability
Probability = true/total
Odds
Odds = favorable/unfavorable
Angle of hands on a clock
Angle = ½ |60H-11M|
Sine
Opposite/hypotenuse
Cosine
Adjacent/hypotenuse
Tangent
opposite/adjacent
Inscribed Angle
m<1 = ½ a
Angle formed by chords
m<1 = ½ (a+b) or sum of intercepted arcs
Angle formed by secants
m<1 = ½ (a-b) or difference of intercepted arcs
Pentagonal numbers (nth row)
n(3n-1)/2
Triangular numbers(nth row)
n(n+1)/2
Chords in circles
ab=cd
Secants in circle
a(a+d)=c(c+b)
Tangents in circles
PA=PB <A=<B=90 deg
Secant and tangent in circles
a²=c(c+b)
Hexagonal numbers (nth row)
n(2n-1)
Ceva’s Theorem
aec=bdf
Euler's Law
F+V = E+2
Radius of inscribed circle
r=(sqrt s(s-a)(s-b)(s-c))/s OR r=(2 x area)/perimete
Relationship between midpoints of diagonals of trapezoids
1/2(HG-EF) (which is bigger side minus smaller side)
Pythagorean Triplets
3-4-5
5-12-1
7-24-25
8-15-17
9-40-41
11-60-61
12-35-37
13-84-85
16-63-65
20-21-29
Quadratic formula
ax²+bx+c=0
x=(-b+-sqrtb²-4ac)/2a
Ptolemy’s theorem
ACxDB=(ADxBC)+(ABxDC)
radius of circumscribed circle
r = ABC/4(area)
radius of circle circumscribed in an equilateral triangle and given height
r=2/3h
radius of circle circumscribed in an equilateral triangle and given side
r=(ssqrt3)/3
Volume of a tetrahedron
V=(s³sqrt2)/12
Centroid of a triangle w/ vertices (x_1,y_1) (x_2, y_2) (x_3, y_3)
((x1+x2+x3)/3), (y1+y2+y3)/3))
Perimeter of a triangle formed by tangents
P=2SA
Stewart’s Theorem
x2b+y2a=z(w2+ab)
Circumscribed circle
2r = sin A/a = sin B/b = sin C/c
Volume of a frustum
V = 1/3(B1+B2+sqrtB1B2)h
Volume of a triangle given SAS
A = ½ absinC
Area of an octagon given radius
A = 2r²sqrt 2
Area of an octagon given side
A=2s²(1+sqrt2)
Height of a triangle given area and one side
h = (2area)/c
height of equilateral triangle
h=qz+pz+rz
Diagonals of a parallelogram
2(AD²+AB²) = AC²+BD²
Lines in a rectangle
a²+b²=c²+d²
Area of an ellipse
A=pi ab
Quadrilateral with perpendicular diagonals
area = ½ AC x BD (product of diagonals)
AB²+CD²=BC²+AD²
Distance between parallel lines
Ax+By=C and Ax+By=D
d = |C-D|/sqrt A²+B²
Length of an angle bisector
length= 1/a+b sqrt ab(a+b+c)(a+b-c)
Surface area of a frustum
SA = pi (R+r)sqrt (R-r)²+h²