1/17
Name | Mastery | Learn | Test | Matching | Spaced | Call with Kai |
|---|
No analytics yet
Send a link to your students to track their progress
∫ k dx
kx + C, where k is a constant.
∫ x^n dx
x^(n+1) / (n+1) + C, for n ≠ -1.
∫ 1/x dx
ln|x| + C
∫ e^x dx
e^x + C
∫ b^x dx
b^x / ln(b) + C.
∫ sin(x) dx
-cos(x) + C
∫ cos(x) dx
sin(x) + C
∫ sec^2(x) dx
tan(x) + C
∫ csc^2(x) dx
-cot(x) + C
∫ sec x tan x dx
sec x + C
∫ csc x cot x dx
csc x + C
∫ tan x dx =
ln | sec x | + C
∫ cot x dx =
ln | sin x | + C
∫ 1/(x² + a²)dx =
(1/a) tan⁻¹(x/a) + C
∫ 1/√(a² - x²) dx =
sin⁻¹(x/a) + C, a > 0
∫ sinh(x) dx
cosh(x) + C
∫ cosh(x) dx
sinh(x) + C
∫ √x dx
x^(3/2) / (3/2) + C or (2/3)x^(3/2) + C.