Test 1: Important Concepts

0.0(0)
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/23

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

24 Terms

1
New cards

Constant: y = h(x) = k

∫ K dx = kx + C

2
New cards

Power: y = h(x) = (x)P

∫ xP dx = (x P+1) / (P + 1) + C

3
New cards

Natural Exponential: y = h(x) = ekx

∫ ekx dx = (ekx) / (ln |x| × k) + C

4
New cards

General Exponential: y = h(x) = akx

∫ akx dx = (akx) / (ln |x| × k) + C

5
New cards

Natural Log: y = h(x) = 1/x

∫ 1/x dx = ln |x| + C

6
New cards

Sine: y = h(x) = sin(x)

∫ sin(x) dx = -cos(x) + C

7
New cards

Cosine: y = h(x) = cos(x)

∫ cos(x) dx = sin(x) + C

8
New cards

Secant Squared: y = h(x) = sec2(x)

∫ sec2(x) dx = tan(x) + C

9
New cards

Secant-Tan: y = h(x) = sec(x) × tan(x)

∫ sec(x) × tan(x) dx = sec(x) + C

10
New cards

Cosecant Squared: y = h(x) = csc2(x)

∫ csc2(x) dx = -cot(x) + C

11
New cards

Csc-Cot: y = h(x) = csc(x) × cot(x)

∫ csc(x) × cot(x) dx = -csc(x) + C

12
New cards

Constant Multiple Rule: y = h(x) = k × f(x)

∫ k f(x) dx = k ∫ f(x) dx = k × F(x) + C

13
New cards

Sum Rule: y = h(x) = f(x) + g(x)

∫ F(x) + G(x) + C

14
New cards

Difference Rule: y = h(x) = f(x) - g(x)

∫ F(x) - G(x) + C

15
New cards

Area of a Circle

A = π × r2

1 = x2 + y2

16
New cards

Area of a Square

A = x2

17
New cards

Area of a Rectangle

A = b × h

18
New cards

Area of a Triangle

A = ½ (b × h)

19
New cards

Δx

(b - a) / n

20
New cards

Left Approximate

Area formula

L ≈ Δx [ f(a) + f(c) ]

21
New cards

Right Approximate

Area formula

Δx ≈ [ f(c) + f(b) ]

22
New cards

Middle Approximate

Area formula

M ≈ Δx [ f(d) + f(e) ]

23
New cards

Fundamental Theorem of Calculus (FTC)

∫ f(x) dx = F(x) + C, F’(x) = f(x)

a b f(x) dx = F(b) - F(a)

24
New cards

Properties of Definite Integrals

aa f(x) dx = 0

ab k × f(x) dx = k × ab f(x) dx

ab [ f(x) ± g(x) ] dx = ab f(x) dx ± ab g(x) dx

ab f(x) dx = ac f(x) dx + cb f(x) dx

ab f(x) dx = - ba f(x) dx