1/23
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Constant: y = h(x) = k
∫ K dx = kx + C
Power: y = h(x) = (x)P
∫ xP dx = (x P+1) / (P + 1) + C
Natural Exponential: y = h(x) = ekx
∫ ekx dx = (ekx) / (ln |x| × k) + C
General Exponential: y = h(x) = akx
∫ akx dx = (akx) / (ln |x| × k) + C
Natural Log: y = h(x) = 1/x
∫ 1/x dx = ln |x| + C
Sine: y = h(x) = sin(x)
∫ sin(x) dx = -cos(x) + C
Cosine: y = h(x) = cos(x)
∫ cos(x) dx = sin(x) + C
Secant Squared: y = h(x) = sec2(x)
∫ sec2(x) dx = tan(x) + C
Secant-Tan: y = h(x) = sec(x) × tan(x)
∫ sec(x) × tan(x) dx = sec(x) + C
Cosecant Squared: y = h(x) = csc2(x)
∫ csc2(x) dx = -cot(x) + C
Csc-Cot: y = h(x) = csc(x) × cot(x)
∫ csc(x) × cot(x) dx = -csc(x) + C
Constant Multiple Rule: y = h(x) = k × f(x)
∫ k f(x) dx = k ∫ f(x) dx = k × F(x) + C
Sum Rule: y = h(x) = f(x) + g(x)
∫ F(x) + G(x) + C
Difference Rule: y = h(x) = f(x) - g(x)
∫ F(x) - G(x) + C
Area of a Circle
A = π × r2
1 = x2 + y2
Area of a Square
A = x2
Area of a Rectangle
A = b × h
Area of a Triangle
A = ½ (b × h)
Δx
(b - a) / n
Left Approximate
Area formula
L ≈ Δx [ f(a) + f(c) ]
Right Approximate
Area formula
Δx ≈ [ f(c) + f(b) ]
Middle Approximate
Area formula
M ≈ Δx [ f(d) + f(e) ]
Fundamental Theorem of Calculus (FTC)
∫ f(x) dx = F(x) + C, F’(x) = f(x)
a ∫ b f(x) dx = F(b) - F(a)
Properties of Definite Integrals
a ∫ a f(x) dx = 0
a ∫ b k × f(x) dx = k × a ∫ b f(x) dx
a ∫ b [ f(x) ± g(x) ] dx = a ∫ b f(x) dx ± a ∫ b g(x) dx
a ∫ b f(x) dx = a ∫ c f(x) dx + c ∫ b f(x) dx
a ∫ b f(x) dx = - b ∫ a f(x) dx