membrane bound organelles

0.0(0)
studied byStudied by 0 people
0.0(0)
call kaiCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/18

encourage image

There's no tags or description

Looks like no tags are added yet.

Last updated 1:05 PM on 1/21/26
Name
Mastery
Learn
Test
Matching
Spaced
Call with Kai

No analytics yet

Send a link to your students to track their progress

19 Terms

1
New cards

animal cell

  • Cells are highly organised 

  • Vast majority of proteins are produced on cytoplasmic ribosomes + encoded by nuclear genome 

    • Others are produced in mitochondria 

2
New cards

how do internal organelles evolve

Developed methods of invagination of the membrane 

  • Thought to be some advantage of the way the membrane interacted with cell 

 Nuclear membrane formed first 

  • Then endoplasmic reticulum 

  • Are continuous with each other 

 Mitochondria and chloroplasts have a different origin 

<p class="Paragraph SCXO93535803 BCX4" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Developed methods of invagination of the membrane</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO93535803 BCX4" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Thought to be some advantage of the way the membrane interacted with cell</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul><p class="Paragraph SCXO93535803 BCX4" style="text-align: left;"><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Nuclear membrane formed first</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO93535803 BCX4" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Then endoplasmic reticulum</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO93535803 BCX4" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Are continuous with each other</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul><p class="Paragraph SCXO93535803 BCX4" style="text-align: left;"><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Mitochondria and chloroplasts have a different origin</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p>
3
New cards

mitochondria, chloroplasts and peroxisomes

  • Mitochondria 

    • Oxidative phosphorylation 

    • Production of majority of cellular ATP 

  • Chloroplasts 

    • photosynthesis 

  • Peroxisome 

    • Fatty acid beta oxidation 

    • Source of energy 

4
New cards

endomembrane system

  • endoplasmic reticulum

  • rough

  • smooth

  • Golgi apparatus

  • vesicles

5
New cards

endoplasmic reticulum

  • Entry point of newly synthesised proteins  

  • Translocon 

    • Allows proteins to go into channel into endoplasmic reticulum 

    • Doesn’t let ions in 

    • Facilitates the assembly of integral proteins 

      • If not they get into lumen of endoplasmic reticulum 

      • Can stay or move onto other organelles 

      • Integral proteins move laterally 

      • Out of translocon into membrane 

6
New cards

rough ER

  • Studded with ribosomes 

  • Cytoplasmic ribosomes (on cytoplasmic side) 

  • Dynamic  

    • Interacts with system 

7
New cards

smooth ER

  • No ribosomes 

  • Involved in lipid synthesis 

8
New cards

Golgi apparatus

  • Organised into Golgi sacs/cisternae 

  • Cis face, trans face 

  • New proteins travel from cis to trans 

9
New cards

vesicles

  • Secretory 

  • Release molecules to cell surface 

    • exocytosis 

  • Can be diverted 

    • e.g. lysosomes 

  • Form via budding 

  • Fuse to release 

10
New cards

why are there different compartments

  • Sequential processing / modification of secreted proteins 

    • Important for these to happen in the correct order 

  • Keep reactions separate 

    • e.g. enzymes separate 

11
New cards

processes that take place in the endoplasmic reticulum

  • N-glycosylation

  • Disulphide bond formation

  • folding and quality control

12
New cards

disulphide bond formation

  • Lumen = reducing site 

    • So happens on lumen side 

  • Proteins disulfide isomerase forms bond 

  • Oxidation 

  • Protein gets reduced 

13
New cards

folding and quality control

  • Proteins not correctly folded do not leave ER 

    • Role is not in ER, so will not start incorrectly functioning 

  • Binds to glucosyl transferase (adds glucose) 

    • Protein binds to calnexin 

    • Keeps protein in endoplasmic reticulum 

  • Sugar removed by glucosidase 

    • If protein is still incorrectly folded then glucose added again 

  • Once protein is correct, it will no longer be detected by glucosyl transferase and it can leave the ER lumen 

14
New cards

Golgi apparatus

  • In stacks 

  • Enzymes 

    • Modify sugars on lipids and proteins 

    • Cleave proteins (e.g proteases) 

<ul><li><p class="Paragraph SCXO248243300 BCX4" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>In stacks</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO248243300 BCX4" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Enzymes</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO248243300 BCX4" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Modify sugars on lipids and proteins</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO248243300 BCX4" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Cleave proteins (e.g proteases)</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul></li></ul><p></p>
15
New cards

N and O linked glycosylation

  • N-linked 

    • Adding sugar on asparagine 

    • In ER 

  • O-linked 

    • Adding sugar on threonine/serine 

  • ABO blood groups 

    • Due to different sugar modifications 

    • At antigen terminus 

      • O= n/a 

      • A = N-acetylgalactosamine 

      • B=N-acetylglucosamine 

16
New cards

N glycosylation

What it is:
Attachment of a sugar chain to the nitrogen (N) atom of the amide group of asparagine (Asn).

Where it occurs:

  • Begins in the rough endoplasmic reticulum (RER)

  • Further modified in the Golgi apparatus

Amino acid requirement:

  • Occurs at the consensus sequence:
    Asn–X–Ser/Thr (X ≠ proline)

Process:

  • A pre-assembled oligosaccharide is transferred all at once to the protein.

  • The glycan is then trimmed and modified.

Functions:

  • Protein folding and stability

  • Cell–cell recognition

  • Protection from degradation

Examples:

  • Antibodies (IgG)

  • Many membrane and secreted proteinsO

17
New cards

O glycosylation

What it is:
Attachment of a sugar to the oxygen (O) atom of the hydroxyl group of serine or threonine.

Where it occurs:

  • Mainly in the Golgi apparatus

Amino acid requirement:

  • No strict consensus sequence

Process:

  • Sugars are added one at a time directly to the protein.

Functions:

  • Lubrication and protection (e.g., mucus)

  • Structural support

  • Cell signaling

Examples:

  • Mucins

  • Proteoglycans

18
New cards

lysosomes

  • Degradative organelles 

  • First assembled in ER 

  • Ph = 5 inside lumen (for enzymes) 

    • Nucleases 

    • Proteases 

    • Glycosidases 

    • Lipases 

    • Phosphatases 

    • Sulfatases 

    • Phospholipases 

  • Lumen reduced by a H+ pump 

    • ATP -> ADP + pi 

    • H+ pumped into lumen 

19
New cards

protein sorting

  • A eukaryotic cell contains 10 billion (~1010) protein molecules 

  • Cells are highly organised 

  • Different organelles contain different sets of proteins. 

  • If proteins were not sorted correctly chemical chaos would result. 

  • Protein synthesis/degradation 

 

  • Starts in the cytosol 

  • 4 outcomes 

    • Stays put 

    • Nucleus 

    • ER trafficking 

    • mitochondrion