Function Mastery - AP Precalclus (2024)

studied byStudied by 14 people
0.0(0)
learn
LearnA personalized and smart learning plan
exam
Practice TestTake a test on your terms and definitions
spaced repetition
Spaced RepetitionScientifically backed study method
heart puzzle
Matching GameHow quick can you match all your cards?
flashcards
FlashcardsStudy terms and definitions
Get a hint
Hint

Formula/Equation - Linear Function

1 / 59

flashcard set

Earn XP

Description and Tags

60 Terms

1

Formula/Equation - Linear Function

f(x) = mx + b

m: slope

b: y-intercept

<p>f(x) = mx + b</p><p>m: slope</p><p>b: y-intercept</p>
New cards
2

Domain & Range - Linear Function

Domain: (-∞, ∞)

Range: (-∞, ∞)

<p>Domain: (-∞, ∞)</p><p>Range: (-∞, ∞)</p>
New cards
3

Formula/Equation - Quadratic Function

f(x) = a × (b(x + c))² + d

a: vertical stretch/compress

b: horizontal compress/stretch (b > 0, compress horizontally)

c: horizontal phase shift (-c = right c)

d: vertical phase shift

<p>f(x) = a × (b(x + c))² + d</p><p>a: vertical stretch/compress</p><p>b: horizontal compress/stretch (b &gt; 0, compress horizontally)</p><p>c: horizontal phase shift (-c = right c)</p><p>d: vertical phase shift</p>
New cards
4

Domain & Range - Quadratic Function

Domain: (-∞, ∞)

Range: [d, ∞)

<p>Domain: (-∞, ∞)</p><p>Range: [d, ∞)</p>
New cards
5

Horizontal Stretch/Compress - All Rectangular Functions

Stretch: 0 < a < 1

Compress: a > 1


Stretch: 0 < b < 1

Compress: b > 1

New cards
6

Vertical Stretch/Compress - All Rectangular Functions

Stretch: a > 1

Compress: 0 < a < 1


Stretch: b > 1

Compress: 0 < b < 1

New cards
7

Phase Shift - All Rectangular Functions

Shift Left: +c

Shift Right: -c

<p>Shift Left: +c</p><p>Shift Right: -c</p>
New cards
8

Formula/Equation - Cubic Function

f(x) = a × (b(x + c))³ + d

a: Vertical Stretch

b: Horizontal Stretch

c: Horizontal Phase Shift (-c = right c)

d: Vertical Phase Shift

<p>f(x) = a × (b(x + c))³ + d</p><p>a: Vertical Stretch</p><p>b: Horizontal Stretch</p><p>c: Horizontal Phase Shift (-c = right c)</p><p>d: Vertical Phase Shift</p>
New cards
9

Domain & Range - Cubic Function

Domain: (-∞, ∞)

Range: (-∞, ∞)

<p>Domain: (-∞, ∞)</p><p>Range: (-∞, ∞)</p>
New cards
10

Formula/Equation - Square Root Function

f(x) =a × √(b(x + c)) + d

a: Vertical Stretch

b: Horizontal Stretch

c: Horizontal Phase Shift

d: Vertical Phase Shift

<p>f(x) =a × √(b(x + c)) + d</p><p>a: Vertical Stretch</p><p>b: Horizontal Stretch</p><p>c: Horizontal Phase Shift</p><p>d: Vertical Phase Shift</p>
New cards
11

Domain & Range - Square Root Function

Domain: [-c, ∞)

Range: [d, ∞)

<p>Domain: [-c, ∞)</p><p>Range: [d, ∞)</p>
New cards
12

Inverse of what? - Square Root Function

Inverse of Quadratic function.

<p>Inverse of Quadratic function.</p>
New cards
13

Formula/Equation - Rational Function

f(x) = (Zeroes) / (Vertical Asymptotes)

New cards
14

Horizontal Asymptotes - Rational Function

(n = degree)

Nn < Dn —> y = 1

Nn = Dn —> (N Ceofficent) / (D Ceofficient)

Nn > Dn —> (No Horizontal Asymptote)

New cards
15

Slant Asymptotes - Rational Function

Exists if Nn -1 = Dn e(If N degree is exactly one greater than of D)

To find slant asymptote:

  1. Use long division or synthetic division.

  2. Divide the numerator with the denominator

  3. Ignore remainder

<p>Exists if N<sup>n </sup>-1 = D<sup>n </sup>e(If N degree is exactly one greater than of D)</p><p>To find slant asymptote:</p><ol><li><p>Use long division or synthetic division.</p></li><li><p>Divide the numerator with the denominator</p></li><li><p>Ignore remainder</p></li></ol>
New cards
16

Formula/Equation - Exponential Function

f(x) = a × b(x + c)

a: Vertical Stretch

b: Horizontal Stretch

c: Horizontal Phase Shift

d: Vertical Phase Shift

<p>f(x) = a × b<sup>(x + c)</sup></p><p>a: Vertical Stretch</p><p>b: Horizontal Stretch</p><p>c: Horizontal Phase Shift</p><p>d: Vertical Phase Shift</p>
New cards
17

Domain & Range - Exponential Function

Domain: (-∞, ∞)

Range: (0, ∞)

<p>Domain: (-∞, ∞)</p><p>Range: (0, ∞)</p>
New cards
18

Horizontal Asymptote - Exponential Function

HA at value a.

<p>HA at value a.</p>
New cards
19

Growth - Exponential Function

When b > 1

<p>When b &gt; 1</p>
New cards
20

Decay - Exponential Function

When 0 < b < 1

<p>When 0 &lt; b &lt; 1</p>
New cards
21

Formula/Equation - Logarithmic Function

f(x) =a × logb(x + c) + d

a: Vertical Stretch

b: Horizontal Stretch (Note: reciprocated)

c: Horizontal Phase Shift

d: Vertical Phase Shift

<p>f(x) =a × log<sub>b</sub>(x + c) + d</p><p>a: Vertical Stretch</p><p>b: Horizontal Stretch (Note: reciprocated)</p><p>c: Horizontal Phase Shift</p><p>d: Vertical Phase Shift</p>
New cards
22

b Limitation - Logarithmic Function

MUST: B > 0

<p>MUST: B &gt; 0</p>
New cards
23

Vertical Asymptote - Logarithmic Function

VA at -c. (Horizontal Phase Shift)

<p>VA at -c. (Horizontal Phase Shift)</p>
New cards
24

Domain & Range - Logarithmic Function

Domain: (0, ∞)

Range: (-∞, ∞)

<p>Domain: (0, ∞)</p><p>Range: (-∞, ∞)</p>
New cards
25

Inverse Function of what? - Logarithmic Function

Inverse of Exponential Function

<p>Inverse of Exponential Function</p>
New cards
26

Growth - Logarithmic Function

When b > 1

<p>When b &gt; 1</p>
New cards
27

Decay - Logarithmic Function

When 0 < b < 1

<p>When 0 &lt; b &lt; 1</p>
New cards
28

What is a period? (Def & Equation)

A single cycle of a periodic function.

Period = 2π / b

Exception for tangent: Period = π / b

<p>A single cycle of a periodic function.</p><p>Period = 2π / b</p><p>Exception for tangent: Period = π / b</p>
New cards
29

Formula/Equation - Sine Function

f(x) = a × sin(b(x + c)) + d

a: Vertical Stretch

b: Horizontal Stretch

c: Horizontal Phase Shift

d: Vertical Phase Shift

<p>f(x) = a × sin(b(x + c)) + d</p><p>a: Vertical Stretch</p><p>b: Horizontal Stretch</p><p>c: Horizontal Phase Shift</p><p>d: Vertical Phase Shift</p>
New cards
30

Domain, Range, & Period - Sine Function

Mid - Max - Mid - Min - Mid

Domain: [0, 2π]

Range |a|: [-1, 1]

Period: 2π / b

Midline: y = d

Starts at Mid

<p><strong>Mid</strong> - Max - Mid - Min - Mid</p><p>Domain: [0, 2π]</p><p>Range |a|: [-1, 1]</p><p>Period: 2π / b</p><p>Midline: y = d</p><p>Starts at Mid</p>
New cards
31

Formula/Equation - Cosine Function

f(x) =a × cos(b(x + c)) + d

a: Vertical Stretch

b: Horizontal Stretch

c: Horizontal Phase Shift

d: Vertical Phase Shift

<p>f(x) =a × cos(b(x + c)) + d</p><p>a: Vertical Stretch</p><p>b: Horizontal Stretch</p><p>c: Horizontal Phase Shift</p><p>d: Vertical Phase Shift</p>
New cards
32

Translating Sine Function ←→ Cosine Function

sin(x) = cos(x - π/2) [Shifts right]

cos(x) = sin(x + π/2) [Shifts left]

<p>sin(x) = cos(x - π/2) [Shifts right]</p><p>cos(x) = sin(x + π/2) [Shifts left]</p>
New cards
33

Domain, Range, & Period - Cosine Function

Max - Mid - Min - Mid - Max

Domain: [0, 2π]

Range |a|: [-1, 1]

Period: 2π / b

Midline: y = d

Starts at Max

<p><strong>Max</strong> - Mid - Min - Mid - Max</p><p>Domain: [0, 2π]</p><p>Range |a|: [-1, 1]</p><p>Period: 2π / b</p><p>Midline: y = d </p><p>Starts at Max</p>
New cards
34

Formula/Equation - Tangent Function

f(x) = a × tan(b(x + c)) + d

a: Vertical Stretch

b: Horizontal Stretch

c: Horizontal Phase Shift

d: Vertical Phase Shift

<p>f(x) = a × tan(b(x + c)) + d</p><p>a: Vertical Stretch</p><p>b: Horizontal Stretch</p><p>c: Horizontal Phase Shift</p><p>d: Vertical Phase Shift</p>
New cards
35

Domain, Range, & Period - Tangent Function

Domain: (-π/2, π/2)

Range |a|: (-∞, ∞)

Period: π / b (Parent Period: π)

Midline: y = d

<p>Domain: (-π/2, π/2)</p><p>Range |a|: (-∞, ∞)</p><p>Period: π / b (Parent Period: π)</p><p>Midline: y = d</p>
New cards
36

Asymptotes - Tangent Function

Each asymptote occurs at: π/2 ± πn where n ∈ ℤ

<p>Each asymptote occurs at: π/2 ± πn  where n ∈ ℤ</p>
New cards
37

Define the notation: a ∈ ℤ

variable a is a set of all integers.

New cards
38

Formula/Equation - Cosecant Function (csc)

f(x) = a × csc(b(x + c)) + d

a: Vertical Stretch

b: Horizontal Stretch

c: Horizontal Phase Shift

d: Vertical Phase Shift

<p>f(x) = a × csc(b(x + c)) + d</p><p>a: Vertical Stretch</p><p>b: Horizontal Stretch</p><p>c: Horizontal Phase Shift</p><p>d: Vertical Phase Shift</p>
New cards
39

Domain, Range, & Period - Cosecant Function (csc)

Domain: (0, π) (of course changes with shifts)

Range: [a, ∞) & (-∞, -a]

Period: π / b (Parent Period: π)

Midline: y = d

<p>Domain: (0, π) (of course changes with shifts)</p><p>Range: [a, ∞) &amp; (-∞, -a]</p><p>Period: π / b (Parent Period: π)</p><p>Midline: y = d</p>
New cards
40

Reciprocal of what? - Cosecant Function (csc)

Reciprocal of sin.

<p>Reciprocal of sin.</p>
New cards
41

Formula/Equation - Secant Function (sec)

f(x) = a × sec(b(x + c)) + d

a: Vertical Stretch

b: Horizontal Stretch

c: Horizontal Phase Shift

d: Vertical Phase Shift

<p>f(x) = a × sec(b(x + c)) + d</p><p>a: Vertical Stretch</p><p>b: Horizontal Stretch</p><p>c: Horizontal Phase Shift</p><p>d: Vertical Phase Shift</p>
New cards
42

Domain, Range, & Period - Secant Function (sec)

Domain: (-π/2, π/2)

Range: [a, ∞) & (-∞, -a]

Period: π / b (Parent Period: π)

Midline: y = d

<p>Domain: (-π/2, π/2)</p><p>Range: [a, ∞) &amp; (-∞, -a]</p><p>Period: π / b (Parent Period: π)</p><p>Midline: y = d</p>
New cards
43

Reciprocal of what? - Secant Function (sec)

Reciprocal of cos.

<p>Reciprocal of cos.</p>
New cards
44

Formula/Equation - Cotangent Function (cot)

f(x) = a × cot(b(x + c)) + d

a: Vertical Stretch

b: Horizontal Stretch

c: Horizontal Phase Shift

d: Vertical Phase Shift

<p>f(x) = a × cot(b(x + c)) + d</p><p>a: Vertical Stretch</p><p>b: Horizontal Stretch</p><p>c: Horizontal Phase Shift</p><p>d: Vertical Phase Shift</p>
New cards
45

Domain, Range, & Period - Cotangent Function (cot)

Domain: (0, π)

Range: (-∞, ∞)

Period: π / b (Parent Period: π)

Midline: y = d

<p>Domain: (0, π)</p><p>Range: (-∞, ∞)</p><p>Period: π / b (Parent Period: π)</p><p>Midline: y = d</p>
New cards
46

Reciprocal of what? - Cotangent Function (cot)

Reciprocal of tan.

<p>Reciprocal of tan.</p>
New cards
47

Domain & Range - Inverse Sine Function (Arcsin)

Domain: [-1, 1]

Range: [π/2, -π/2]

<p>Domain: [-1, 1]</p><p>Range: [π/2, -π/2]</p>
New cards
48

Domain & Range - Inverse Cosine Function (Arccos)

Domain: [-1, 1]

Range: [0, π]

<p>Domain: [-1, 1]</p><p>Range: [0, π]</p>
New cards
49

Domain & Range - Inverse Tangent Function (Arctan)

Domain: (-∞, ∞)

Range: (π/2, -π/2)

<p>Domain: (-∞, ∞)</p><p>Range: (π/2, -π/2)</p>
New cards
50

Asymptotes - Inverse Tangent Function (Arctan)

Two Vertical Asymptotes:

y = (π × a)/2

y = -(π × a)/2

<p>Two Vertical Asymptotes: </p><p>y = (π × a)/2 </p><p>y = -(π × a)/2 </p>
New cards
51

Cosine vs. Sin Polar Function

Cosine functions are ALWAYS on the x-axis

Sine functions are ALWAYS on the y-axis

<p>Cosine functions are ALWAYS on the x-axis</p><p>Sine functions are ALWAYS on the y-axis</p>
New cards
52

Formula/Equation - Polar Circle Function

r = a × sin(θ)

a: amplitude/scale

<p>r = a × sin(θ)</p><p>a: amplitude/scale</p>
New cards
53

Domain - All Limacone Functions

Domain: [0, 2π]

(Except for even rose curves)

New cards
54

Formula/Equation - Polar Cardioid Limacone Function

r = a ± b × sin(θ)

MUST: (a / b) = 1

<p>r = a ± b × sin(θ)</p><p><strong>MUST: (a / b) = 1</strong></p>
New cards
55

Formula/Equation - Polar Dimpled Limacone Function

r = a ± b × sin(θ)

MUST: 1 < (a / b) < 2

<p>r = a ± b × sin(θ)</p><p><strong>MUST: 1 &lt; (a / b) &lt; 2</strong></p>
New cards
56

Formula/Equation - Polar Convex Limacone Function

r = a ± b × sin(θ)

MUST: (a / b) > 2

<p>r = a ± b × sin(θ)</p><p><strong>MUST: (a / b) &gt; 2</strong></p>
New cards
57

Formula/Equation - Polar Inner-loop Limacone Function

r = a ± b × sin(θ)

MUST: (a / b) < 1

<p>r = a ± b × sin(θ)</p><p><strong>MUST: (a / b) &lt; 1</strong></p>
New cards
58

Formula/Equation - Polar Rose Curves Function

r = a × sin(n × θ)

a: Amplitude

n: number of petals

Double petals when n is even

<p>r = a × sin(n × θ)</p><p>a: Amplitude</p><p>n: number of petals</p><p><strong>Double petals when n is even</strong></p>
New cards
59

When n is odd - Polar Rose Curves Function

graph has n petals.

Domain: [0, π]

<p>graph has n petals.</p><p>Domain: [0, π]</p>
New cards
60

When n is even - Polar Rose Curves Function

graph has 2n petals. (Double)

Domain: [0, 2π]

Note: Even Sin Rose Curves Function’s petals do not intercept x or y axis.

<p>graph has 2n petals. (Double)</p><p>Domain: [0, 2π]</p><p>Note: <strong>Even Sin Rose Curves Function’s petals </strong>do not intercept x or y axis.</p>
New cards
robot