Chapter 3 catecholamines

0.0(0)
studied byStudied by 0 people
full-widthCall with Kai
GameKnowt Play
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/35

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

36 Terms

1
New cards

Catecholamines

  • Amino Acid Derived hormone type

  • • Have a catechol group and an amine group • Derived from tyrosine

  • Dopamine, Norepinephrine, Epinephrine

  • • Synthesized in the Adrenal Medulla

  • • Primary function for NE and E • Responds to stress

<ul><li><p><strong>Amino Acid Derived hormone type</strong></p></li><li><p>• Have a catechol group and an amine group • Derived from tyrosine </p></li><li><p>• <strong>Dopamine, Norepinephrine, Epinephrine</strong></p></li><li><p><strong> • Synthesized in the Adrenal Medulla</strong></p></li><li><p><strong> • Primary function for NE and E </strong>• Responds to stress</p></li></ul><p></p>
2
New cards

Stimuli for catecholamine release

  • Stress Response is the stimuli

  • • Emotional Stress

    • • Fear/Anxiety • Excitement

  • Physical Stress

    • • Exercise, Pain/Injury • Hypotension/Hypovolemia

  • • Environmental Stress

    • • Cold/Heat • Hypoxia

  • • Metabolic Stress

    • • Hypoglycemia

  • Need gluocse in the blood in stressful situations through catecholamine release

3
New cards

Autonomic Nervous System

  • • Efferent Division of Nervous System

  • • Not under Voluntary Control

  • • Sympathetic Branch

    • • Fight or Flight • Thoracolumbar neurons(middle of spinal cord)

  • Parasympathetic Branch

    • • Rest & Digest • Cervical and Sacral neurons(start and end of spinal cord

4
New cards

Ganglionic Pathways

  • ANS uses a two-neuron pathway

  • Preganglionic Neuron & Postganglionic Neuron

  • Divergence

    • • One preganglionic neuron may synapse onto as many as 32 postganglionic neurons

  • SNS

    • • Short preganglionic, long post ganglionic

  • PNS

    • • Long preganglionic, short post ganglionic

<ul><li><p>ANS uses a two-neuron pathway</p></li><li><p>Preganglionic Neuron &amp; Postganglionic Neuron</p></li><li><p><strong>Divergence</strong></p><ul><li><p><strong>• One preganglionic neuron may synapse onto as many as 32 postganglionic neurons</strong></p></li></ul></li><li><p>SNS</p><ul><li><p>• Short preganglionic, long post ganglionic</p></li></ul></li><li><p>PNS</p><ul><li><p>• Long preganglionic, short post ganglionic</p></li></ul></li></ul><p></p>
5
New cards

Receptors & Neurotransmitters in the CNS for nervous sytems

  • • Preganglionic onto Postganglionic

    • • Same for SNS & PNS • ACh onto a nicotinic receptor

  • Postganglionic onto Target

    • • SNS • Norepinephrine onto Adrenergic Receptor • α and β Adrenergic Receptors

    • • PNS • ACh onto Muscarinic receptor

  • Sympathetic pathways use acetylcholine and norepinephrine, parasympathetic pathways use acetylcholine only

<ul><li><p>• Preganglionic onto Postganglionic</p><ul><li><p>• Same for SNS &amp; PNS • ACh onto a nicotinic receptor</p></li></ul></li><li><p>Postganglionic onto Target</p><ul><li><p><strong>• SNS • Norepinephrine onto Adrenergic Receptor • α and β Adrenergic Receptors</strong></p></li><li><p><strong>• PNS • ACh onto Muscarinic </strong>receptor</p></li></ul></li><li><p><strong>Sympathetic pathways use acetylcholine and norepinephrine, parasympathetic pathways use acetylcholine only </strong></p></li></ul><p></p>
6
New cards

Adrenal medulla

  • • Modified Sympathetic Ganglion

  • SNS preganglionic neurons synapse onto this adrenal structure

  • • Stimulated in response to a significant stressor

  • Releases Epinephrine (80%) and NE (20%) into the blood •

    • Neurohormone • Systemic, less selective responses (any tissue with adrenergic receptors)

    • Neurons have lots of norepinephrine, but the blood requires a lot of epinephrine for stress response

<ul><li><p>• Modified Sympathetic Ganglion</p></li><li><p><strong>SNS preganglionic neurons synapse onto this adrenal structure</strong></p></li><li><p>• Stimulated in response to a significant stressor</p></li><li><p><strong>Releases Epinephrine (80%) and NE (20%) into the blood •</strong></p><ul><li><p>Neurohormone • Systemic, less selective responses (any tissue with adrenergic receptors)</p></li><li><p><strong>Neurons have lots of norepinephrine, but the blood requires a lot of epinephrine for stress response</strong></p></li></ul></li></ul><p></p>
7
New cards

Synaptic ACh Storage and Transport

  • ACh is synthesized in cytosol (in the nerve terminal) and stored in vesicles

    • Golgi apparatus and ER are necessary to produce the complex vesicles

  • • Vesicles (empty) are formed in the cell body
    • Transported to nerve terminal along microtubules via the motor protein Kinesin(Kinesin walk along the microtubules)

<ul><li><p><strong>ACh is synthesized in cytosol (in the nerve terminal) and stored in vesicles</strong></p><ul><li><p><strong>Golgi apparatus and ER are necessary to produce the complex vesicles</strong></p></li></ul></li><li><p>• Vesicles (empty) are formed in the cell body <br><strong>• Transported to nerve terminal along microtubules via the motor protein Kinesin(Kinesin walk along the microtubules)</strong></p></li></ul><p></p>
8
New cards

What is the enzyme responsible for ACh formation?

  • • Choline Acetyltransferase

    • • Located in cytosol of axon terminal

    • • Converts Choline + Acetyl CoA to Acetylcholine

    • • Choline brought in via membrane transportetransport

<ul><li><p><strong>• Choline Acetyltransferase</strong></p><ul><li><p>• Located in<strong> cytosol of axon terminal</strong></p></li><li><p><strong>• Converts Choline + Acetyl CoA to Acetylcholine</strong></p></li><li><p>• Choline brought in via membrane transportetransport</p></li></ul></li></ul><p></p>
9
New cards

Synaptic ACh Entryways

  • • Vesicles contain two membrane proteins that allow entry of ACh

    • • H+ ATPase • Causes H+ to build up in the Vesicle to transport ACh as well( 1 degree = co-transporter)

    • • VAChT (Vesicle ACh Transporter) • Swaps H+ for AC(2 degree = antiporter)

<ul><li><p>• Vesicles contain <strong>two membrane proteins that allow entry of ACh</strong></p><ul><li><p>• H+ ATPase •<strong> Causes H+ to build up in the Vesicle to transport ACh as well( 1 degree = co-transporter)</strong></p></li><li><p>• VAChT (Vesicle ACh Transporter) • <strong>Swaps H+ for AC(2 degree = antiporter)</strong></p></li></ul></li></ul><p></p>
10
New cards

ACh Release

  • Vesicles with ACh dock at the membrane, but do not release ACh. • SNARE binding vesicle/membrane

  • Calcium (from VG Calcium channels) binds to synaptotagmin.

  • Calcium binding to synaptotagmin causes displacement of complexin

  • This causes vesicle/membrane fusion and the release of vesicular contents (ACh)

  • Afterwards, vesicles are reabsorbed and recycled or degraded.

<ul><li><p>Vesicles with ACh dock at the membrane, but do not release ACh. • <strong>SNARE binding vesicle/membrane</strong></p></li><li><p><strong>Calcium (from VG Calcium channels) binds to synaptotagmin.</strong></p></li><li><p>Calcium binding to synaptotagmin causes displacement of complexin</p></li><li><p>This causes vesicle/membrane fusion and the re<strong>lease of vesicular contents (ACh)</strong></p></li><li><p>Afterwards, vesicles are reabsorbed and recycled or degraded.<br></p></li></ul><p></p>
11
New cards

ACH binding and Recycling

  • ACh binds to target, opening sodium channels

  • Sodium influx opens Voltage-Dependent Calcium Channels (VDCC)

    • • Calcium influx into the chromaffin cell or nerve terminal of SNE postganglionic neuron

  • ACh in the synaptic cleft is hydrolyzed by Acetylcholinesterase to Choline and acetate

  • Choline is then brought back into the preganglionic neuron via a sodium cotransporter (using sodium gradient for energy)

  • acetate leaves the cell and gets metabolized by liver for excretion(no recycling)the

12
New cards

Norepinephrine in SNS Neurons(Tyrosine pathway)

  • • Tyrosine is brought in via an AA transporter

  • • Tyrosine->DOPA->Dopamine

  • • Dopamine enters a vesicle and is converted to NE and stored

  • • Enters via VMAT2 transport protein

  • • Action Potential opens VDCC in the postganglionic neuron • Calcium influx causes vesicle release of NE.

13
New cards

Norepephrine in SNS Neurons

  • NE activates adrenergic receptors (GPCRs) • α1, α2, β1, β2, β3

  • NE is recycled via the NE transporter (NETr)

  • NE induces negative feedback via α2 activation

  • Some NE diffuses to blood (metabolized by the liver)

  • ACH broken down by enzyme in membrane, NE is recycled by being received by a transporter and then being transported into the cell for recycling

14
New cards

Neuroendocrine Catecholamine Release diagram

  • chromaffin cells produce catecholamine when they are activated by Ach

<ul><li><p>chromaffin cells produce catecholamine when they are activated by Ach</p></li></ul><p></p>
15
New cards

Adrenal Gland

  • • Superior to the kidneys

  • • Multilayered

    • • Different layers produce different hormones

    • Cortex (True Endocrine Gland)

      • • Zona Glomerulosa(upper layer) • Zona fasciculata(middle thick layer) • Zona Reticularis(bottom layer)

  • • Medulla (Modified Sympathetic Ganglion)

    • • Chromaffin cells • Synthesize and secrete catecholamines

<ul><li><p>• Superior to the kidneys</p></li><li><p>• Multilayered</p><ul><li><p>• Different layers produce different hormones</p></li><li><p>•<strong> Cortex (True Endocrine Gland)</strong></p><ul><li><p>• Zona Glomerulosa(upper layer) • Zona fasciculata(middle thick layer) • Zona Reticularis(bottom layer)</p></li></ul></li></ul></li><li><p><strong>• Medulla (Modified Sympathetic Ganglion)</strong></p><ul><li><p><strong>• Chromaffin cells • Synthesize and secrete catecholamines</strong></p></li></ul></li></ul><p></p>
16
New cards

Epinepherine Synthesis

The synthesis for this catecholamine hormone uses VMAT transporters (catecholamine/H+ antiporter)

  • NE leaves the vesicle • Converted to epinepherine in the cytosol (via PMNT)

  • Epinepherine enters vesicle

  • Stored in a complex with chromogranin proteins.

<p>The synthesis for this catecholamine hormone uses VMAT transporters (catecholamine/H+ antiporter)</p><ul><li><p><strong>NE leaves the vesicle • Converted to epinepherine in the cytosol (via PMNT)</strong></p></li><li><p>Epinepherine enters vesicle</p></li><li><p>Stored in a complex with chromogranin proteins.<br></p></li></ul><p></p>
17
New cards

Catecholamine Release in Chromaffin Cells

  • SNS stimulation of chromaffin cells causes Na+ influx • ACh binding to nAChR

  • Na+ induced depolarization opens VDCC(voltage gated ion channel) • Initiates exocytosis

  • Similar to exocytosis of ACh from neurons

    • • Larger vesicles in chromaffin cells • Slower • Additional accessory proteins. • Stimulated by Calcium Calmodulin • Stimulates accessory proteins • Interacts with Synaptotagmin

  • Negative Feedback •

    • Catecholamines on α2 receptors • Reduces SNARE interaction, slowing exocytosis

    • • ATP (released from vesicles) • Closes VDCC by GPCR cascade

  • binds with CaM

    • • Facilitates exocytosis • Stimulates CaMK • Phosphorylates (activates) Tyrosine Hydroxylase • Leads to increased catecholamine synthesis

<ul><li><p>SNS stimulation of chromaffin cells causes Na+ influx • ACh binding to nAChR</p></li><li><p><strong>Na+ induced depolarization opens VDCC(voltage gated ion channel) • Initiates exocytosis</strong></p></li><li><p><strong>Similar to exocytosis of ACh from neurons</strong></p><ul><li><p>• Larger vesicles in chromaffin cells • Slower • Additional accessory proteins. • Stimulated by Calcium Calmodulin • Stimulates accessory proteins • Interacts with Synaptotagmin</p></li></ul></li><li><p>Negative Feedback •</p><ul><li><p>Catecholamines on α2 receptors • Reduces SNARE interaction, slowing exocytosis</p></li><li><p><strong>• ATP (released from vesicles) • Closes VDCC by GPCR cascade</strong></p></li></ul></li><li><p>binds with<strong> CaM </strong></p><ul><li><p>• Facilitates exocytosis • S<strong>timulates CaMK • Phosphorylates (activates) Tyrosine Hydroxylase • Leads to increased catecholamine synthesis</strong></p></li></ul></li></ul><p></p>
18
New cards

Effects of Cortisol

  • • Stress response causes cortisol to be released from the Zona fasciculata(middle layer of the adrenal cortex)

  • • Cortisol reaches the adrenal medulla

  • • Venous drainage

  • • Binds to nuclear receptors in chromaffin cells • Increases gene expression to induce synthesis of PNMT and VMAT( enzyme converter of norepinephrine to epinephrine and transporter of epinephrine respectively)

19
New cards

PACAP

  • Splanchnic Nerve also secretes Pituitary Adenylate Cyclase Activating Polypeptide (PACAP)

  • Binds to the PAC1R

    • • GPCR (Gs) • Leads to an increase in cAMP

    • • cAMP activates PKA • Phosphorylates and stimulates Tyrosine HydroxylasecAMP activates CREB (cAMP Response Element Binding Protein)

    • • Increases gene expression to induce synthesis of Tyrosine Hydroxylas

<ul><li><p>Splanchnic Nerve also secretes Pituitary Adenylate Cyclase Activating Polypeptide (PACAP)</p></li><li><p>Binds to the PAC1R </p><ul><li><p>• GPCR (Gs) • Leads to an increase in cAMP </p></li><li><p>• cAMP activates PKA <strong>• Phosphorylates and stimulates Tyrosine Hydroxylase</strong> • <strong>cAMP activates CREB (cAMP Response Element Binding Protein)</strong></p></li><li><p> • Increases gene expression to induce synthesis of Tyrosine Hydroxylas</p></li></ul></li></ul><p></p>
20
New cards

Catecholamine degredation

  • enzymes present in the liver are responsible for this catecholamine process

    • Catechol-O-methyltransferase (COMT): COMT makes dihydroxy mandelic acid into vanillylmandelic acid, norepinephrine to normetanephrine, and epinephrine to metanephrine.

    • Monoamine Oxidase (MOA): MOA takes catecholamines(Norepi and epi) and converts them to dihydroxy mandelic acid

<ul><li><p>enzymes present in the liver are responsible for this catecholamine process</p><ul><li><p><strong>Catechol-O-methyltransferase (COMT): </strong>COMT makes d<strong>ihydroxy mandelic</strong> acid into <strong>vanillylmandelic</strong> acid,<strong> norepinephrine to normetanephrine, and epinephrine to metanephrine.</strong></p></li><li><p><strong>Monoamine Oxidase (MOA): MOA takes catecholamines(Norepi and epi) </strong>and converts them to <strong>dihydroxy mandelic acid</strong></p></li></ul></li></ul><p></p>
21
New cards

Adrenergic receptor

  • GPCRs

  • α1, α2, β1, β2, β3

  • Activated by NE released from SNS postganglionic neurons (Neurotransmitter)

  • Activated by circulated NE and Epi released from the adrenal medulla (Neurohormone)

  • varying locations, sensitivities, and effects

  • Beta 2 Favours epinephrine response due to the shape of the receptor.

  • All beta receptors and alpha 1 are Gs(adenylate cyclase activator) A2 is GI(inhibitors adenylate cyclase AC)

<ul><li><p>GPCRs</p></li><li><p>α1, α2, β1, β2, β3</p></li><li><p><strong>Activated by NE released from SNS postganglionic neurons (Neurotransmitter)</strong></p></li><li><p>Activated by circulated NE and Epi released from the adrenal medulla (Neurohormone)</p></li><li><p>varying locations, sensitivities, and effects</p></li><li><p><strong>Beta 2 Favours epinephrine response due to the shape of the receptor.</strong></p></li><li><p>All beta receptors and alpha 1 are Gs(adenylate cyclase activator) A2 is GI(inhibitors adenylate cyclase AC)</p></li></ul><p></p>
22
New cards

CREB(cAMP Response Element Binding Protein)

  • This protein is used to gain gene expression from GPCR

  • More of this protean means more stimulation on GPCR to release

  • • Enables gene transcription from a membrane-bound receptor

  • PKA activation can activate this protein (phosphorylates CREB at Serine 133)

  • • Chronic activation can lead to appreciable gene transcription(continuous activation)

    • Increased mitochondrial biogenesis • Cardiac muscle remodeling(more cardiac strength) • Uncoupling protein (UCP1) generation in brown adipose tissue receptor

<ul><li><p>This protein is used to gain gene expression from GPCR</p></li><li><p>More of this protean means more stimulation on GPCR to release</p></li><li><p><strong>• Enables gene transcription from a membrane-bound receptor</strong></p></li><li><p>PKA activation can activate this protein (phosphorylates CREB at Serine 133)</p></li><li><p><strong>• Chronic activation can lead to appreciable gene transcription(continuous activation</strong>)</p><ul><li><p>Increased mitochondrial biogenesis <strong>• Cardiac muscle remodeling(more cardiac strength) • Uncoupling protein (UCP1) generation in brown adipose tissue receptor</strong></p></li></ul></li><li><p></p></li></ul><p></p>
23
New cards

Tyrosine hydroxylase

  • This enzyme is made in the process of norepinephrine creation

  • This enzyme is the tyrosine enzyme that makes Tyrosine to L-Dopa

  • More tyrosine hydroxylase means more L-Dopa for catecholamine production

24
New cards

α1 Adrenergic Receptors

  • Vasculature • Vasoconstriction

  • Eye • Dilator muscle contraction (pupil dilation)

  • GI tract • Sphincter Contraction

  • Genitourinary tract • Internal urinary sphincter contraction • Vas deferens and prostate smooth muscle (mediates ejaculation).

    • closes the urinary sphincter, stops the need to go to the bathroom, and also closes smooth muscles to stop the reproduction process

    • parasympathetic nervous system is responsible for arousal; a quick sympathetic nervous system response mediates arousal

  • Salivary Glands • Reduces saliva production

  • Liver • Promotes glycogenolysis and gluconeogenesis • Inhibits glycogen synthesis

    • Glycogenolysis: glycogen > glucose, gluconeogenesis: glucose from carbohydrates(want more glucose during stress)

  • • Pancreas • Inhibit insulin secretion

25
New cards

α2 Adrenergic Receptors

  • Skin and Gut Blood Vessels • Vasoconstriction(want extra vasoconstriction in skin and gut, that’s why alpha has this effect)

  • Sympathetic Neurons and Adrenal Medulla • Negative Feedback

  • Pancreas • Inhibit Insulin Secretion • Stimulate Glucagon Secretion(glucagon encourages more glucose in blood)

  • GI Tract Neurons • Reduce GI motility

  • Platelets • Blood Clotting

  • a constrictor 2 the death

26
New cards

β1 Adrenergic Receptors

  • Heart • Increase Heart Rate • Increase Contractility(most important regulated area)

  • Kidneys • Stimulate production of hormones (RAAS Pathway hormones) • Increase blood pressure • Decrease urine production • Increase vasoconstriction(just know RAAS pathway increases blood pressure, no need to know all hormones)

  • Adipose • Stimulate lipolysis

  • You only have on heart, even if you have multiple kidneys and fat

27
New cards

β2 Adrenergic Receptors

  • Bronchial Smooth Muscle • Bronchodilation (reduces airway resistance)

  • • Some Blood Vessels • Vasodilation • Muscle, coronary arteries

  • • Skeletal Muscle • Stimulate glycogenolysis and lipolysis

  • • Liver • Stimulate glycogenolysis and gluconeogenesis and lipolysis

  • • Uterus • Uterine Relaxation

  • • GI Tract Smooth Muscle • Reduced motility

  • • Adipose Tissue • Stimulates Lipolysis • Pancreas • Stimulate Glucagon Secretion

  • Beta 2 is for scary responses, alpha receptors and Beta1 receptors are for slight changes but crank up with large stress response.significant

  • Regulated by hormones rather than neurons, slower

  • Epi-pen: helps with vasodilation when there is constriction due to an asthma attack

    • epinephrine primarily affects the heart rate and airway dilation, while norepinephrine primarily functions to constrict blood vessels, thereby increasing blood pressure

  • B2: 2 be slow, 2 be breathing

28
New cards

β3 Adrenergic Receptors

  • Adipose Tissue

  • • Predominantly Brown Adipose Tissue(Heat generator)
    • Some in White Adipose Tissue(main adipose storage tissue)

  • • Stimulates lipolysis • Activates thermogenesis (reduced efficiency of mitochondria)

  • 3 = fatty

29
New cards

Gs and Gi GPCRs

  • β Receptors are Gs

  • α2 Receptors are Gi

    • • Result in activation or inhibition of Adenylate Cyclase (AC)(GS activate, GI inhibit)

  • AC(Adenylyl cyclase) generates cAMP • cAMP stimulates PKA (binding to regulatory proteins) • PKA phosphorylates various enzymes in the cell to activate them

<ul><li><p><strong>β Receptors are Gs</strong></p></li><li><p>α2 Receptors are Gi</p><ul><li><p>• Result in activation or inhibition of Adenylate Cyclase (AC)(GS activate, GI inhibit)</p></li></ul></li><li><p>AC(Adenylyl cyclase) generates cAMP • cAMP stimulates PKA (binding to regulatory proteins) • PKA phosphorylates various enzymes in the cell to activate them</p></li></ul><p></p>
30
New cards

AKAP and Mitochondria

  • • PKA Regulatory proteins can bind to AKAP (a kinase anchoring protein)

    • • AKAP and Phosphodiesterase (PDE) tether PKA to the mitochondrial membrane.

    • • cAMP then binds to PKA at the mitochondrion and is removed by PDE

  • • This enhances PKA function at the mitochondrion

    • • Phosphorylates StAR • Increases metabolite transport across the mitochondrial membrane

    • • Phosphorylates Cytochrome Oxidase • Increases mitochondrial efficiency and enhances Cytochrome Oxidase Activity

  • • β adrenergic receptor activation acutely improves mitochondrial function

31
New cards

Gq GPCRs

  • α1 receptors

  • • Receptor activation leads to activation of Phospholipase C

  • Converts PIP2 to IP3 and DAG

  • • DAG activates PKC and IP3 induces calcium release from the SR

<ul><li><p>α1 receptors</p></li><li><p> • Receptor activation leads to activation of Phospholipase C </p></li><li><p><strong> Converts PIP2 to IP3 and DAG</strong></p></li><li><p><strong> • DAG activates PKC and IP3 induces calcium release from the SR</strong></p></li></ul><p></p>
32
New cards

Function 1 of catecholamine: Maintain Blood Glucose

  • Liver increases glycogenolysis and gluconeogenesis

  • • Liver decreases glycogen synthesis

  • • Increases hepatic glucose production helps to keep blood glucose from dropping.

  • • SM(skeletal muscle) increases glycogenolysis (alternative to blood glucose)

33
New cards

Function 2: Increase availability of other fuel sources

  • SM glycogenolysis • (use glycogen instead of glucose)

  • • SM increases lipolysis • (use fatty acids instead of glucose)

  • • AT increases lipolysis • (use fatty acids instead of glucose) • Increase blood fatty acid concentration for use by other tissues (including liver and SM)

  • • Liver Increases lipolysis • Increases fatty acid oxidation in the liver for ATP, instead of glucose

  • • Liver increases ketogenesis • Increased blood fatty acid concentration (from AT lipolysis) stimulates ketogenesis in the liver • Increased fatty acid oxidation in the liver stimulates ketogenesis in the liver

<ul><li><p>•<strong> SM glycogenolysis</strong> • (use glycogen instead of glucose) </p></li><li><p><strong>• SM increases lipolysis </strong>• (use fatty acids instead of glucose) </p></li><li><p><strong>• AT increases lipolysis • (use fatty acids instead of glucose) • Increase blood fatty acid concentration</strong> for use by other tissues (including liver and SM)</p></li><li><p><strong> • Liver Increases lipolysis • Increases fatty acid oxidation </strong>in the liver for ATP, instead of glucose </p></li><li><p><strong>• Liver increases ketogenesis • Increased blood fatty acid concentration (from AT lipolysis) stimulates ketogenesis in the liver </strong>• Increased fatty acid oxidation in the liver stimulates ketogenesis in the liver</p></li></ul><p></p>
34
New cards

Function 3: Alter secretion of other hormones to aid with functions 1 & 2.

  • • Increased glucagon from pancreas • Increase hepatic glucose production (via glycogenolysis and gluconeogenesis)

  • • Decreased insulin secretion • Decrease blood glucose utilization by non-brain organs.

35
New cards

Stimulation of Lipolysis in Adipose Pathway

  • Epinephrine increase PKA. PKA phosphorylates PLIN1 to dissociate from CGI-58 and attach to HSL, replacing GOS2 stopping inhibition and activating ATGL and HSL to cause lipolysis in adipose tissue

<ul><li><p>Epinephrine increase PKA. <strong>PKA phosphorylates PLIN1 to dissociate from CGI-58 and attach to HSL</strong>, replacing GOS2 stopping inhibition and activating ATGL and HSL to cause lipolysis in adipose tissue</p></li></ul><p></p>
36
New cards

Stimulation of Lipolysis in Muscle(enzymes used)

  • PKA phosphorylates PLIN5 AND CGI-58 as well as HSL in order to cause lipolysis in this tissue type(HSL also stimulated in adipose),

<ul><li><p>PKA phosphorylates <strong>PLIN5 AND CGI-58 as well as HSL in order to cause lipolysis in this tissue type</strong>(HSL also stimulated in adipose),</p></li></ul><p></p>