🧠 Nucleus

0.0(0)
studied byStudied by 2 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/14

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

15 Terms

1
New cards

Nucleus Functions

  1. Genetic Material Management

    • Storage, replication, and repair of DNA

  1. Gene Expression

    • Transcription: production of mRNA, tRNA, rRNA

    • RNA splicing: processing of RNA

  1. Ribosome Production

    • Synthesis of ribosomal subunits

<ol><li><p class=""><strong>Genetic Material Management</strong></p><ul><li><p class=""><strong>Storage, replication, and repair</strong> of DNA</p></li></ul></li></ol><ol start="2"><li><p class=""><strong>Gene Expression</strong></p><ul><li><p class=""><strong>Transcription</strong>: production of mRNA, tRNA, rRNA</p></li><li><p class=""><strong>RNA splicing</strong>: processing of RNA</p></li></ul></li></ol><ol start="3"><li><p class=""><strong>Ribosome Production</strong></p><ul><li><p class="">Synthesis of ribosomal subunits</p></li></ul></li></ol><p></p>
2
New cards
  1. Storage, Replication, and Repair of Genetic Material

  • DNA Structure and Organization

    1. DNA duplex

      • 2 nm in diameter

    1. DNA is complexed with histones to form nucleosomes

      • Nucleosome is 8 core histone proteins + DNA wrapped around 1.65 times = Euchromatin

      • Histone H1 is the 9th protein that stabilizes the wrap

      • Histone + DNA wrap height = 10 nm

    2. Histones fold in on each other (like an elastic band) - Make chromatin fibers

      • 30 nm diameter

    3. Chromatin coils

      • 300 nm in diameter

    4. Coils coil

      • 700 nm in diameter

    5. Fibers are tightly coiled to produce condensed chromatids

      • Total width of 2 sister chromatids: 1400 nm

  • Stretched end-to-end, DNA molecules in a single human cell would measure about 2 meters (roughly 6 feet)

  • DNA Damage Sources

    • UV light exposure

    • Replication errors

    • Chemical exposure

    • Cellular metabolism

    • Ionizing radiation

  • DNA Repair Mechanisms

    • DNA repair machinery corrects damage

<ul><li><p class=""><strong>DNA Structure and Organization</strong></p><ol><li><p><span>DNA <strong>duplex</strong></span></p><ul><li><p><span><strong>2 nm</strong> in diameter</span></p></li></ul></li></ol><ol start="2"><li><p><span>DNA is complexed with histones to form <strong>nucleosomes</strong></span></p><ul><li><p><span>Nucleosome is 8 core histone proteins + DNA wrapped around 1.65 times = Euchromatin</span></p></li></ul><ul><li><p><span>Histone H1 is the 9th protein that stabilizes the wrap</span></p></li><li><p><span>Histone + DNA wrap height = <strong>10 nm</strong></span></p></li></ul></li><li><p><span>Histones fold in on each other (like an elastic band) - Make <strong>chromatin fibers</strong></span></p><ul><li><p><span><strong>30 nm</strong> diameter</span></p></li></ul></li><li><p><span><strong>Chromatin coils</strong></span></p><ul><li><p><span><strong>300 nm</strong> in diameter</span></p></li></ul></li><li><p><span><strong>Coils coil</strong></span></p><ul><li><p><span><strong>700 nm</strong> in diameter</span></p></li></ul></li><li><p><span>Fibers are tightly coiled to produce condensed chromatids</span></p><ul><li><p><span>Total width of 2 sister chromatids: <strong>1400 nm</strong></span></p></li></ul></li></ol></li><li><p>Stretched end-to-end, <strong>DNA molecules</strong> in a single human cell would measure <strong>about 2 meters (roughly 6 feet)</strong></p></li></ul><p></p><ul><li><p class=""><strong>DNA Damage Sources</strong></p><ul><li><p class="">UV light exposure</p></li><li><p class="">Replication errors</p></li><li><p class="">Chemical exposure</p></li><li><p class="">Cellular metabolism</p></li><li><p class="">Ionizing radiation</p></li></ul></li><li><p class=""><strong>DNA Repair Mechanisms</strong></p><ul><li><p class="">DNA repair machinery corrects damage</p></li></ul></li></ul><p></p>
3
New cards
  1. Expression of Genetic Material

  • Transcription

    • Transcription produces mRNAs, tRNAs, rRNAs, and other types of RNA (e.g., miRNA, eRNAs, piRNAs)

    • Promoter region: Controls transcription initiation

    • RNA received 5’ cap and poly-A tail

  • RNA Splicing

    • RNA splicing occurs before nuclear export of mRNAs, removes introns and joins exons

  • Note

    • This is an oversimplification of the complex process of gene expression

<ul><li><p class=""><strong>Transcription</strong></p><ul><li><p class="">Transcription produces <strong>mRNAs</strong>, <strong>tRNAs</strong>, <strong>rRNAs</strong>, and other types of RNA (e.g., <strong>miRNA</strong>, <strong>eRNAs</strong>, <strong>piRNAs</strong>)</p></li><li><p class=""><strong>Promoter region</strong>: Controls transcription initiation</p></li><li><p class="">RNA received 5’ cap and poly-A tail</p></li></ul></li><li><p class=""><strong>RNA Splicing</strong></p><ul><li><p class="">RNA splicing occurs <strong>before nuclear export</strong> of mRNAs, <strong>removes introns</strong> and <strong>joins exons</strong></p></li></ul></li><li><p class=""><strong>Note</strong></p><ul><li><p class="">This is an oversimplification of the complex process of gene expression</p></li></ul></li></ul><p></p>
4
New cards
  1. Ribosome Biosynthesis

  • Noncoding RNAs (e.g., tRNA and rRNA) do not encode proteins

  • These RNAs are transcribed from DNA located in the nucleolus

  • Extra info:

    • rRNA is transcribed in the nucleolus from ribosomal DNA (rDNA)

    • rRNA combines with ribosomal proteins (imported from cytoplasm) to form ribosomal subunits

    • These subunits are then assembled into large and small ribosomal subunits in nucleolus

    • rRNA and ribosomal proteins form functional ribosomes, which are essential for protein synthesis

    • Ribosomal subunits are exported to cytoplasm

    • In cytoplasm, subunits assemble to form functional ribosomes, which begin process of translation (protein synthesis)

<ul><li><p class=""><strong>Noncoding RNAs</strong> (e.g., <strong>tRNA</strong> and <strong>rRNA</strong>) do not encode proteins</p></li><li><p class="">These RNAs are transcribed from DNA located in the <strong>nucleolus</strong></p></li><li><p class=""><strong>Extra info:</strong></p><ul><li><p class=""><strong>rRNA</strong> is transcribed in the <strong>nucleolus</strong> from ribosomal DNA (rDNA)</p></li><li><p class=""><strong>rRNA</strong> combines with <strong>ribosomal proteins</strong> (imported from cytoplasm) to form <strong>ribosomal subunits</strong></p></li><li><p class="">These subunits are then assembled into <strong>large</strong> and <strong>small ribosomal subunits</strong> in nucleolus</p></li><li><p class=""><strong>rRNA</strong> and <strong>ribosomal proteins</strong> form functional ribosomes, which are essential for <strong>protein synthesis</strong></p></li><li><p class=""><strong>Ribosomal subunits</strong> are exported to <strong>cytoplasm</strong></p></li><li><p class="">In cytoplasm, subunits assemble to form <strong>functional ribosomes</strong>, which begin process of <strong>translation</strong> (protein synthesis)</p></li></ul></li></ul><p></p>
5
New cards

Nuclear Structure

  • Nuclear envelope: Double-layer membrane surrounding the nucleus

  • Nuclear membrane: Composed of an inner and outer lipid bilayer

  • Nuclear pores: Channels that allow material to pass between the nucleus and cytoplasm

  • Nuclear lamina: Meshwork of intermediate filaments providing structural support to the nucleus

  • Nuclear content:

    • Chromatin: DNA wrapped around histone proteins, organized into chromosomes

    • Nucleoplasm: Fluid inside the nucleus, containing enzymes, nucleotides, and other molecules

    • Nucleolus: Substructure in the nucleus responsible for ribosomal RNA (rRNA) synthesis and ribosome assembly

<ul><li><p class=""><strong>Nuclear envelope</strong>: Double-layer membrane surrounding the nucleus</p></li><li><p class=""><strong>Nuclear membrane</strong>: Composed of an inner and outer lipid bilayer</p></li><li><p class=""><strong>Nuclear pores</strong>: Channels that allow material to pass between the nucleus and cytoplasm</p></li><li><p class=""><strong>Nuclear lamina</strong>: Meshwork of intermediate filaments providing structural support to the nucleus</p></li><li><p class=""><strong>Nuclear content</strong>:</p><ul><li><p class=""><strong>Chromatin</strong>: DNA wrapped around histone proteins, organized into chromosomes</p></li><li><p class=""><strong>Nucleoplasm</strong>: Fluid inside the nucleus, containing enzymes, nucleotides, and other molecules</p></li><li><p class=""><strong>Nucleolus</strong>: Substructure in the nucleus responsible for ribosomal RNA (rRNA) synthesis and ribosome assembly</p></li></ul></li></ul><p></p>
6
New cards

Nuclear Envelope Structure

  • 2 parallel phospholipid bilayers separated by 10-50 nm space

  • Outer nuclear membrane (ONM):

    • Binds ribosomes

    • Continuous with rough ER

  • Inner nuclear membrane (INM):

    • Contains integral proteins

    • Connects to nuclear lamina

<ul><li><p class=""><strong>2 parallel phospholipid bilayers</strong> separated by 10-50 nm space</p></li><li><p class=""><strong>Outer nuclear membrane (ONM)</strong>:</p><ul><li><p class="">Binds ribosomes</p></li><li><p class="">Continuous with rough ER </p></li></ul></li><li><p class=""><strong>Inner nuclear membrane (INM)</strong>:</p><ul><li><p class="">Contains integral proteins</p></li><li><p class="">Connects to nuclear lamina</p></li></ul></li></ul><p></p>
7
New cards

Importance of Nuclear Envelope

  • Separates nuclear content from cytoplasm

  • Separates transcription and translation processes

  • Selective barrier that allows limited movement of molecules between nucleus and cytoplasm

8
New cards

Nuclear Lamina

  • Supports nuclear envelope

  • Thin meshwork of filamentous proteins:

    • Lamins (intermediate filaments) found in animal cells only

    • Plants have nuclear lamina, but not made of lamin protein (equivalent proteins in plants is unknown)

  • Bound to inner membrane of nuclear envelope (NE) by integral membrane proteins

  • Provides structural support for nuclear envelope

  • Attachment sites for chromatin (e.g., heterochromatin)

  • Nuclear lamina forms meshwork next to nucleoplasmic leaflet of inner nuclear membrane

<ul><li><p class="">Supports <strong>nuclear envelope</strong></p></li><li><p class="">Thin meshwork of filamentous proteins:</p><ul><li><p class=""><strong>Lamins</strong> (intermediate filaments) found in <strong>animal cells only</strong></p></li><li><p class="">Plants have nuclear lamina, but not made of <strong>lamin protein</strong> (equivalent proteins in plants is unknown)</p></li></ul></li><li><p class="">Bound to <strong>inner membrane</strong> of nuclear envelope (NE) by <strong>integral membrane proteins</strong></p></li><li><p class="">Provides <strong>structural support</strong> for nuclear envelope</p></li><li><p class=""><strong>Attachment sites</strong> for <strong>chromatin</strong> (e.g., <strong>heterochromatin</strong>)</p></li><li><p class=""><strong>Nuclear lamina forms meshwork next to nucleoplasmic leaflet</strong> of inner nuclear membrane</p></li></ul><p></p>
9
New cards

Nuclear Pores

  • 1 μm in diameter

  • Perforate nuclear envelope

  • Small molecules and ions passively diffuse

  • Large proteins and RNA require active transport

  • Gateways between cytoplasm and nucleus

  • 3000-4000 pores/nucleus

  • Pores are located where inner and outer membranes fuse

  • Complex structure involving arrangement of different types of proteins

<ul><li><p class=""><strong>1 μm</strong> in diameter</p></li><li><p class="">Perforate nuclear envelope</p></li><li><p class="">Small molecules and ions <strong>passively diffuse</strong></p></li><li><p class="">Large proteins and RNA require <strong>active transport</strong></p></li><li><p class=""><strong>Gateways between cytoplasm and nucleus</strong></p></li><li><p class=""><strong>3000-4000 pores/nucleus</strong></p></li><li><p class="">Pores are located where inner and outer membranes <strong>fuse</strong></p></li><li><p class="">Complex structure involving arrangement of different types of proteins </p></li></ul><p></p>
10
New cards

Nuclear Pore Complex

  • Composed of nucleoporins (NUPs) – a large family of proteins

  • Octagonal symmetry / basket-like structure

  • Projects into cytoplasm and nucleoplasm

  • The nuclear pore complex is a supramolecular complex

    • Supramolecular = Very large and complex molecule

    • 15-30 times the size of a ribosome

  • Passive diffusion of molecules that are 40 kDA or less

    • Fast

    • 100 molecules/minute/pore

  • Regulated movement of larger molecules

    • Slow

    • 6 molecules/minute/pore

<ul><li><p class="">Composed of <strong>nucleoporins (NUPs)</strong> – a large family of proteins</p></li><li><p class=""><strong>Octagonal symmetry / basket-like structure</strong></p></li><li><p class="">Projects into <strong>cytoplasm</strong> and <strong>nucleoplasm</strong></p></li><li><p class="">The nuclear pore complex is a <strong>supramolecular complex</strong></p><ul><li><p class="">Supramolecular = Very large and complex molecule</p></li><li><p class="">15-30 times the size of a ribosome</p></li></ul></li><li><p class=""><strong>Passive diffusion</strong> of molecules that are 40 kDA or less</p><ul><li><p class="">Fast</p></li><li><p class="">100 molecules/minute/pore</p></li></ul></li><li><p class=""><strong>Regulated movement</strong> of larger molecules</p><ul><li><p class="">Slow</p></li><li><p class="">6 molecules/minute/pore</p></li></ul></li></ul><p></p>
11
New cards

Nuclear Import

Requires a Nuclear Localization Signal (NLS)

  • NLS consists of several positively charged amino acids within the protein sequence

<p>Requires a <strong>Nuclear Localization Signal (NLS)</strong></p><ul><li><p class="">NLS consists of several <strong>positively charged amino acids</strong> within the protein sequence</p></li></ul><p></p>
12
New cards

Nuclear Import Mechanism

  1. Protein with NLS (cargo) interacts with Importin protein in cytoplasm

  2. Cargo/Importin complex interacts with FG-NUPs at the NPC and enters the nucleoplasm

  3. Ran-GTP interacts with Importin; cargo dissociates and stays in nucleoplasm

  4. Ran-GTP/Importin complex exits nucleus through NPC

  5. GTP is hydrolyzed to GDP

    • Importin released into cytoplasm finds new cargo

Ran-GTP

  • OFF with GDP

  • ON with GTP

  • Step 3 - Conformational change after being turned on allows for Ran-GTP to let go of cargo

    • Cargo stays in nucleus

<ol><li><p class="">Protein with <strong>NLS (cargo)</strong> interacts with <strong>Importin</strong> protein in cytoplasm</p></li><li><p class="">Cargo/Importin complex interacts with <strong>FG-NUPs</strong> at the <strong>NPC</strong> and enters the nucleoplasm</p></li><li><p class=""><strong>Ran-GTP</strong> interacts with <strong>Importin</strong>; cargo dissociates and stays in nucleoplasm</p></li><li><p class=""><strong>Ran-GTP/Importin complex</strong> exits nucleus through <strong>NPC</strong></p></li><li><p class=""><strong>GTP is hydrolyzed</strong> to <strong>GDP</strong></p><ul><li><p class=""><strong>Importin</strong> released into cytoplasm finds new cargo</p></li></ul></li></ol><p class=""></p><p class=""><strong>Ran-GTP</strong></p><ul><li><p class="">OFF with GDP</p></li><li><p class="">ON with GTP</p></li><li><p class=""><strong>Step 3 - Conformational change</strong> after being turned on allows for <strong>Ran-GTP to let go of cargo</strong></p><ul><li><p class=""><strong>Cargo stays in nucleus</strong></p></li></ul></li></ul><p></p>
13
New cards

Nucleocytoplasmic Trafficking

Nuclear import/export are critical for cellular function

  • Nucleotides for transcription

  • Structural proteins (e.g. lamins)

  • DNA packaging proteins (e.g. histones)

  • Proteins for DNA replication, repair, and transcription

  • Proteins for RNA processing (splicing) and export

  • Proteins for ribosome synthesis and export

14
New cards

Nucleolus

  • Largest structure inside nucleus of eukaryotic cells

  • Primary function: Biosynthesis of ribosomes

    • Ribosomes consist of:

      • Small ribosomal subunits (reads RNA)

      • Large subunits (joins amino acids to form polypeptides)

    • Each subunit consists of:

      • Ribosomal RNA (rRNA) molecules

      • Ribosomal proteins

  • Prokaryotes have 70S ribosome (30S in small, 50S in large)

  • Eukaryotes have 80S ribosome (40S in small, 60S in large)

<ul><li><p class=""><strong>Largest structure</strong> inside nucleus of eukaryotic cells</p></li><li><p class="">Primary function: <strong>Biosynthesis of ribosomes</strong></p><ul><li><p class="">Ribosomes consist of:</p><ul><li><p class=""><strong>Small ribosomal subunits</strong> (reads RNA)</p></li><li><p class=""><strong>Large subunits</strong> (joins amino acids to form polypeptides)</p></li></ul></li><li><p class="">Each subunit consists of:</p><ul><li><p class=""><strong>Ribosomal RNA (rRNA)</strong> molecules</p></li><li><p class=""><strong>Ribosomal proteins</strong></p></li></ul></li></ul></li><li><p class=""><strong>Prokaryotes </strong>have <strong>70S </strong>ribosome (30S in small, 50S in large)</p></li><li><p class=""><strong>Eukaryotes </strong>have <strong>80S </strong>ribosome (40S in small, 60S in large)</p></li></ul><p></p>
15
New cards

Ribosome Biosynthesis

  • Synthesis of ribosomal rRNAs:

    • 5.85 rRNA

    • 18S rRNA

    • 28S rRNA

    • 5S rRNA

  • rRNA processing

  • Assembly of subunits:

    • rRNA + ribosomal proteins

  • 40S and 60S subunits exported to cytoplasm

    • Assemble into 80S ribosomes

<ul><li><p class=""><strong>Synthesis of ribosomal rRNAs</strong>:</p><ul><li><p class=""><strong>5.85 rRNA</strong></p></li><li><p class=""><strong>18S rRNA</strong></p></li><li><p class=""><strong>28S rRNA</strong></p></li><li><p class=""><strong>5S rRNA</strong></p></li></ul></li><li><p class=""><strong>rRNA processing</strong></p></li><li><p class=""><strong>Assembly of subunits</strong>:</p><ul><li><p class=""><strong>rRNA + ribosomal proteins</strong></p></li></ul></li><li><p class=""><strong>40S and 60S subunits</strong> exported to <strong>cytoplasm</strong></p><ul><li><p class="">Assemble into <strong>80S ribosomes</strong></p></li></ul></li></ul><p></p>