1/49
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Long-range order (LRO)
a defining property of crystals showing translational symmetry
Intrinsic properties
material properties that are microstructure-insensitive
Extrinsic properties
material properties that are microstructure-sensitive
Intrinsic property examples (4)
coefficient of thermal expansion, modulus of elasticity, refractive index, saturation magnetization
Extrinsic property examples (4)
ductility/toughness/brittleness, electrical conductivity, magnetic coercivity, yield strength
Formula unit
a repeating unit of atoms (building blocks)
Motif/basis
a repeating structure made of formula units
crystalline density __ amorphous density
>
crystalline thermal experimental coefficient __ amorphous thermal experimental coefficient
>>
crystalline index of refraction __ amorphous index of refraction
>
requirements for crystalline state
low temperature, has LRO, kBT << bonding energy
Lattice parameters (2D)
{a,b,y}
Symmetry class
the number of mirror lines in a motif or basis
Point/space lattice
an infinite array of points that fill space
Coordinate format (abc)
(a,b,c)
Direction format (abc)
[abc]
Plane format (abc)
(abc)
Crystallographically equivalent direction format (abc)
<abc>
Equivalent plane format (abc)
{abc}
Coordinate in reciprocal space format (abc)
abc
Primitive unit cell
a unit cell containing one lattice point
Planar lattices
hexagonal, oblique, rectangular, square
Square lattice parameters
{a,a,90}
Rectangular lattice parameters
{a,b,90}
Oblique lattice parameters
{a,b,y}
Hexagonal lattice parameters
{a,a,120}
Lattice parameters (3D)
{a,b,c,a,B,y}
Crystal systems
cubic (c), hexagonal (h), monoclinic (m), orthorhombic (o), rhombohedral/trigonal (R), tetragonal (t), triclinic/anorthic (a)
Types of Bravais symmetry
C (centered on two faces), F (face symmetry), I (centered in body), P (primitive)
Cubic lattice parameters
{a,a,a,90,90,90}
Triclinic/anorthic lattice parameters
{a,b,c,a,B,y}
Monoclinic lattice parameters
{a,b,c,90,B,90}
Hexagonal lattice parameters
{a,a,c,90,90,120}
Rhombohedral/trigonal lattice parameters
{a,a,a,a,a,a}
Orthorhombic lattice parameters
{a,b,c,90,90,90}
Tetragonal lattice parameters
{a,a,c,90,90,90}
Bravais lattices
aP, cF, cI, cP, hP, mC, mP, oC, oF, oI, oP, R, tI, tP
Cubic lattices
3- cF, cI, cP
Tetragonal lattices
2- tI, tP
Orthorhombic lattices
4- oC, oF, oI, oP
Monoclinic lattices
2- mC, mP
Zone law/zonal equation
vector calculus
Metric tensor
|a² a·b a·c|
|a·b b² b·c|
|a·c a·b c²|
Distance equation between points P and Q
D^2 = [Q-P](row) x [g] x [Q-P](col)
Magnitude equation of a vector [v]
|v| = sqrt([v(row)] x [g] x [v(col)])
Reciprocal basis equations
a* = (bxc)/(a·(bxc))
b* = (cxa)/(a·(bxc))
c* = (axb)/(a·(bxc))
Properties of reciprocal base vectors
a* orthogonal to b and c, a*·a=1
Reciprocal metric tensor calculations
metric tensor equation with reciprocal vectors or inverse matrix of real metric tensor
Volume of unit cell
V^2 = det|g|
Distance between planes (hkl)
1/d^2 = [hkl](row) x [g*] x [hkl](col)