1/19
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
dropna
Filters out missing data from a Series or DataFrame, removing rows or columns with NA values based on specified thresholds.
fillna
Fills missing values with a specified value or using interpolation methods like 'ffill' (forward fill) or 'bfill' (backward fill).
isnull
Returns a boolean array indicating which values are missing/NA in a Series or DataFrame.
notnull
Returns the negation of `isnull`, indicating which values are not missing/NA.
drop_duplicates
Use the `drop_duplicates` method, which returns a DataFrame with duplicate rows removed.
duplicated
A boolean Series indicating whether each row is a duplicate of a previous row.
replace
Use the `replace` method, which substitutes occurrences of one value or pattern with another.
rename
Renames axis labels (index or columns) in a DataFrame, either in-place or returning a new DataFrame.
pd.cut
Bins continuous data into intervals based on specified bin edges or quantiles.
pd.qcut
Bins data into equal-sized buckets based on sample quantiles.
detect outliers
Use boolean indexing with conditions (e.g., `np.abs(data) > 3`) or statistical methods like standard deviation.
get_dummies
Converts categorical variables into dummy/indicator variables (one-hot encoding).
split
Use the `split` method, often combined with `strip` to trim whitespace.
str.contains
Checks if each string in a Series contains a specified pattern or substring, returning a boolean Series.
str.extract
Use the `str.extract` or `str.findall` methods with a regex pattern containing groups.
str.replace
Replaces occurrences of a pattern or substring in each string of a Series.
str.cat
Use the `str.cat` method with an optional delimiter.
str.upper
Converts all characters in each string of a Series to uppercase.
str.startswith
Use the `str.startswith` method.
str.len
The length of each string in a Series.