4700 proofs

0.0(0)
studied byStudied by 0 people
0.0(0)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/5

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

6 Terms

1
New cards

If A and B are independent, so are A and B’

  1. define A: (A and B) or (A and B’) → P(A) = P(A and B) + P(A and B’)

  2. Isolate P(A and B’) = P(A) - P(A and B)

  3. Factor: P(A and B’) = P(A)(1-P(B))

  4. P(A and B’) = P(A)P(B’)

2
New cards

If 𝑎 and 𝑏 are constants, then 𝐸(𝑎𝑋 + 𝑏) = 𝑎𝐸(𝑋) + 𝑏. (discrete version)

  1. E(aX+b) = sum(ax f(X)) + sum(b f(X)

  2. a(sum(Xf(X))) + b(sum(f(X)))

  3. aE(X) + b(1) = aE(X) + b

3
New cards

If 𝑎 and 𝑏 are constants, then 𝐸(𝑎𝑋 + 𝑏) = 𝑎𝐸(𝑋) + 𝑏. (continuous version)

  1. E(aX+b) = int(aX f(X)dx) + int(b f(X)dx)

  2. = a int(Xf(X)dx) + b int(f(X)dx)

  3. aE(X) + b(1) = aE(X) + b

4
New cards

sigma² = mu’2 - mu²

  1. E((X-mu))² = E(X² - 2Xmu - mu²)

  2. = E(X²) - E(2Xmu) + E(mu²)

  3. E(X²) - 2muE(X) + E(mu²)

  4. E(X²) - 2(mu)(mu) + mu² = E(X²) - mu²

  5. Set up LHS E(X²) - mu² = E(X²) - mu²

5
New cards

If X has the variance sigma², than var(aX+b) = a²sigma²

  1. var(aX+b) = E((aX+b)²) - (E(aX + b))²

  2. = E(a²X² + 2aXb + b²) - (aE(X) + b)²

  3. = a²E(X²) +2abE(X) + b² - (a²(E(X))² + 2abE(X) + b²)

  4. = a²(E(X²) - (E(X))²)

  5. = a²(sigma²)

6
New cards

The moment-generating function of the Poisson distribution is given by Mx(t) = e^l(ambda * (e^t -1)

  1. Mx(t) = sum(e^xt (p(x; lambda))

  2. = e^-lambda sum( Mac series: (lambdae^t)^x/x!)

  3. e^-lambda (e^z) = e^-lambda (e^lambda e^t)

  4. e^(lambda)(e^t - 1)