1/5
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
If A and B are independent, so are A and B’
define A: (A and B) or (A and B’) → P(A) = P(A and B) + P(A and B’)
Isolate P(A and B’) = P(A) - P(A and B)
Factor: P(A and B’) = P(A)(1-P(B))
P(A and B’) = P(A)P(B’)
If 𝑎 and 𝑏 are constants, then 𝐸(𝑎𝑋 + 𝑏) = 𝑎𝐸(𝑋) + 𝑏. (discrete version)
E(aX+b) = sum(ax f(X)) + sum(b f(X)
a(sum(Xf(X))) + b(sum(f(X)))
aE(X) + b(1) = aE(X) + b
If 𝑎 and 𝑏 are constants, then 𝐸(𝑎𝑋 + 𝑏) = 𝑎𝐸(𝑋) + 𝑏. (continuous version)
E(aX+b) = int(aX f(X)dx) + int(b f(X)dx)
= a int(Xf(X)dx) + b int(f(X)dx)
aE(X) + b(1) = aE(X) + b
sigma² = mu’2 - mu²
E((X-mu))² = E(X² - 2Xmu - mu²)
= E(X²) - E(2Xmu) + E(mu²)
E(X²) - 2muE(X) + E(mu²)
E(X²) - 2(mu)(mu) + mu² = E(X²) - mu²
Set up LHS E(X²) - mu² = E(X²) - mu²
If X has the variance sigma², than var(aX+b) = a²sigma²
var(aX+b) = E((aX+b)²) - (E(aX + b))²
= E(a²X² + 2aXb + b²) - (aE(X) + b)²
= a²E(X²) +2abE(X) + b² - (a²(E(X))² + 2abE(X) + b²)
= a²(E(X²) - (E(X))²)
= a²(sigma²)
The moment-generating function of the Poisson distribution is given by Mx(t) = e^l(ambda * (e^t -1)
Mx(t) = sum(e^xt (p(x; lambda))
= e^-lambda sum( Mac series: (lambdae^t)^x/x!)
e^-lambda (e^z) = e^-lambda (e^lambda e^t)
e^(lambda)(e^t - 1)