1/106
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
y=e^x points
(0,1) (1,e)
y=lnx points
(1,0) (e,1)
Approximation of e
2.72
d/dx [lnu]
u'/u
d/dx [e^u]
e^u u'
d/dx [a^u]
a^u * lna * u'
∫a^xdx
a^x*1/lna+c
∫e^xdx
e^x+c
∫1/xdx
ln|x|+c
If f and g are inverses with (a,b) on f and (b,a) on g, f'(a)=?
1/g'(b)
Change of base log_ab
lnb/lna
Direct Variation
y=kx
Inverse Variation
y=k/x
Exponential Growth
y=Ce^(kt)
∫sinx dx
-cosx+c
∫cosx dx
sinx+c
∫csc^2x dx
-cotx+c
∫sec^2x dx
tanx+c
∫secx tanx dx
secx+c
∫cscx cotx dx
-cscx+c
ln1
0
e^0
1
ln0
dne
∫cotx dx
ln|sinx|+c
∫secx dx
ln|secx+tanx|+c
∫cscx dx
-ln|cscx+cotx|+c
If the prompt says "f(x) is diff." you write…
f(x) is diff., and since diff implies cont., f(x) is cont.
d/dx sinx
cosx
d/dx cosx
-sinx
d/dx tanx
sec^2x
d/dx secx
secxtanx
d/dx cscx
-cscxcotx
d/dx cotx
-csc^2x
v(t) for a particle
particle is moving down
v(t)<0
v(t) for a particle
particle is moving up
v(t)>0
v(t) for a particle
particle is stopped
v(t)=0
v(t) for a particle
particle is slowing down
v(t)&v'(t) have different signs
v(t) for a particle
particle is speeding up
v(t)&v'(t) have same sign
v(t) for a particle
acceleration is negative
a<0
v'(t)<0
v(t) for a particle
acceleration is positive
a>0
v'(t)>0
v(t) for a particle
particle changes direction
v(t) changes signs
Average velocity
Average acceleration
If given f'(x)
f(x) is increasing
f'(x)>0
If given f'(x)
f(x) is decreasing
f'(x)<0
If given f'(x)
f(x) has a relative max
f' changes from pos to neg
If given f'(x)
f(x) has a relative min
f' changes from neg to pos
If given f'(x)
f(x) has an extrema
f' changes signs
If given f'(x)
f(x) is concave up
f">0
slope of f'>0
d/dx[arcsin u]
u'/√(1-u^2)
d/dx[arccos u]
-u'/√(1-u^2)
d/dx[arctan u]
u'/(1+u^2)
d/dx[arccot u]
-u'/(1 + u^2)
d/dx[arcsec u]
u'/(|u|√(u^2-1))
d/dx[arccsc u]
-u'/(|u|√(u^2-1))
∫tanx dx
-ln|cosx|+c
∫du/√(a^2-u^2)
arcsin(u/a)+c
∫du/(a^2+u^2)
(1/a)arctan(u/a)+c
∫du/(u√u^2-a^2)dx
1/a arcsec |u|/a +c
Finding area by disc
π ∫ (radius)^2
Finding area by washer
π ∫ (outer)^2 - π ∫ (inner)^2
Square cross section
∫ (base)^2
Equalateral Triangle cross section
(√3)/4 ∫ (base)^2
Isosceles Right Triangle cross section
1/2 ∫ (base)^2
Semicircles cross section
π/8 ∫ (base)^2
Steps to solve Separable Differential Equations
Seperate, Integrate, Solve
Rate Problems Amt=
Initial + ∫ (Rate in) - ∫ (Rate out)
If given f'(x)
f(x) is concave down
f"<0
slope of f'<0
If given f'(x)
f(x) has a critical point
f'(x)=0 or DNE
If given f'(x)
f(x) has a POI-Point of inflection
f" changes signs
slope of f' changes signs
lim x -> ∞
Degree on top<degree on bottom
Limit=?
top<bottom
0
lim x -> ∞
Degree on top>degree on bottom
Limit=?
top>bottom
DNE or ∞