1/48
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
cos(x)
derivative of sin(x)
-sin(x)
derivative of cos(x)
sec²(x)
derivative of tan(x)
-csc²(x)
derivative of cot(x)
sec(x)tan(x)
derivative of sec(x)
-csc(x)cot(x)
derivative of csc(x)
e^x
derivative of e^x
a^x ln a
derivative of a^x
1/x
derivative of ln(x)
1/(x ln b)
derivative of log_b(x)
1/(√(1-x²))
derivative of sin⁻¹(x)
-1/(√(1-x²))
derivative of cos⁻¹(x)
1/(1+x²)
derivative of tan⁻¹(x)
-cos(x) + C
integral of sin(x)
sin(x) + C
integral of cos(x)
-ln|cos x| + C
integral of tan(x)
ln|sin x| + C
integral of cot(x)
ln|sec x + tan x| + C
integral of sec(x)
-ln |cscx + cotx| + C
integral of csc(x)
sin²x + cos²x = 1
pythagorean identity #1
tan²x + 1 = sec²x
pythagorean identity #2
sin(a)cos(b) + cos(a)sin(b)
sin(a + b) =
sin(a)cos(b) - cos(a)sin(b)
sin(a - b) =
cos(a)cos(b) - sin(a)sin(b)
cos(a + b) =
cos(a)cos(b) + sin(a)sin(b)
cos(a - b) =
(tan(a) + tan(b)) / (1 - tan(a)tan(b))
tan(a + b) =
(tan(a) - tan(b)) / (1 + tan(a)tan(b))
tan(a - b) =
2sin(x)cos(x)
sin(2x) =
cos²(x) - sin²(x) 2cos²(x) - 1 1 - 2sin²(x)
cos(2x) =
2tan(x)/ (1-tan²(x))
tan(2x) =
(1-cos(2x)/2
sin²(x) =
(1+cos(2x)/2
cos²(x) =
Substitute x = asinθ √a²-x² → acosθ
For √a²-x²
Substitute x = atanθ √a²-x² → asecθ
For √a²+x²
Substitute x = asecθ √x²-a² → atanθ
For √x²-a²
(b-a)/n
Δx
Mn = Δx [f(x̄1) + f(x̄2) + ... + f(x̄n)]
Midpoint Approximation
Tn = Δx/2 [f(x0) + 2f(x1) + 2f(x2) + ... + 2f(xn-1) + f(xn)]
Trapezoidal Rule
A ≈ ∆x/3 [f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + ... + f(xn)]
Simpson's Rule
|ET| ≤ k(b-a)³/12n²
Trapezoidal Rule Error Bound
|EM| ≤ k(b-a)³/24n²
Midpoint Approximation Error Bound
|ES| ≤ k(b-a)⁵/180n⁴
Simpson's Rule Error Bound
L = from a to b ∫√(1 + [f'(x)]²) dx
Length Formula
S = from a to b 2π∫f(x)√(1 + [f'(x)]²)dx
Surface Area x-axis Formula
S = from a to b 2π∫x√(1 + [f'(x)]²)dx
Surface Area y-axis Formula
x̄ = from a to b (1/A)∫x[f(x) - g(x)]dx
Center of Mass for x̄
ȳ = from a to b (1/A)∫(1/2)[f(x)² - g(x)²]dx
Center of Mass for ȳ
From A to 0 ∫[p(x) - B] dx
Consumer Surplus (CS)
From A to 0 ∫[B - ps(x)] dx
Producer Surplus (PS)