1/19
Ordinary Differential Equatioins
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
L{f(t)}
integral (0, infinity): f(t)e^(-st)dt
L{e^at}
1/(s-a)
L{1}
1/s
L{dy/dt}
SL{y} - y(0)
Heaviside Function
0, t<a; 1, t>= a
L{u_a(t)}
e^-as/s
L{u_a(t)f(t-a)}
e^-asL{f(t)}
L{y’’}
s^2L{y} - sy(0) - y’(0)
L{sinwt}
w/(s²+w²)
L{coswt}
s/(s^2+w^2)
L{e^atf(t)}
F(s-a)
L{e^atsinwt}
w/((s-a)²+w²)
L{e^atcoswt}
(s-a)/((s-a)^2+w^2)
L{tf(t)}
-Df/ds
L{tsinwt}
2ws/(s²+w²)²
L{tcoswt}
(s^2-w^2)/(s^2+w^2)^2
d_a(t)
infinity, t = a; 0, else
L{d_a(t)}
e^-as
t²y’’ + aty’ + by
p’’ + (a-1)p’ + bp, s = lnt
r(t)y + a(t)y^n
z = y^(1-n), solve dz/dt, convert to y