1/27
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
\int_{}^{}0\!\,dx
c
\int Kdx
Kx+c
\int x^{n}dx
\frac{1}{n+1}x_{}^{n+1}+c
\int Kf\left(x\right)dx
$K\int f\left(x\right)\differentialD x
\int f\left(x\right)\pm g\left(x\right)dx
\int f\left(x\right)\differentialD x\pm\int g\left(x\right)\differentialD x
\int\cos\left(x\right)
\sin x+c
\int\sin\left(x\right)dx
-\cos x+c
\int\sec^2\left(x\right)dx
\tan x+c
\int\csc\left(x\right)\tan\left(x\right)dx
-\csc x+c
\int\sec\left(x\right)\tan\left(x\right)dx
\sec x+c
\int\csc^2\left(x\right)dx
-\cot x+c
\int f\left(g\left(x\right)\right)g^{\prime}\left(x\right)dx
F\left(g\left(x\right)\right)+c
\sum_{i=1}^{n}K\cdot a_{I}
K\sum_{i=1}^{n}a_{i}
\sum_{i=1}^{n}a_{i}\pm b_{i}
\sum_{i=1}^{n}a_{i}\pm\sum_{i=1}^{n}b_{i}
\sum_{i=1}^{n}c
c\cdot n
\sum_{i=1}^{n}i
\frac{n\left(n+1\right)}{2}
\sum_{i=1}^{n}i^2
\frac{n\left(n+1\right)\left(2n+1\right)}{6}
\sum_{i=1}^{n}i^3
\frac{n^2\left(n+1\right)^2}{4}
\Delta x=
\frac{b-a}{n}
c_{i}=
a+\Delta xi
f\left(c_{i}\right)=
plug in ci
Area limit definition
\lim_{n\to\infty}\sum_{i=1}^{n}f\left(c_{i}\right)\Delta x
Define Definite Integrals
\lim_{\left\Vert\Delta\right\Vert\to0}\sum_{i=1}^{n}f\left(c_{i}\right)\Delta x=\int_{a}^{b}\!f\left(x\right)\,dx
Define the fundamental theorem of calculus
\int_{a}^{b}\!f\left(x\right)\,dx=F\left(b\right)-F\left(a\right)
Write equation for u substitution in definite integrals
\int_{a}^{b}\!f\left(g\left(x\right)\right)g^{\prime}\left(x\right)\,dx=\int_{g\left(a\right)}^{g\left(b\right)}\!f\left(u\right)\,du
\int_{a}^{a}\!f\left(x\right)\,dx
0
\int_{a}^{b}\!f\left(x\right)\,dx
-\int_{b}^{a}\!f\left(x\right)\,dx
\int_{a}^{b}\!f\left(x\right)\,dx when c is in (a,b)
\int_{a}^{c}\!f\left(x\right)\,dx+\int_{c}^{b}\!f\left(x\right)\,dx