7. Electrical properties of excitable cells: Capacitance & Conductance Part 1: Capacitance

0.0(0)
studied byStudied by 0 people
full-widthCall with Kai
GameKnowt Play
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/10

flashcard set

Earn XP

Description and Tags

Lecture 7

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

11 Terms

1
New cards

How can we calculate the equilibrium potential of an ion?

  • Use the Nernst equation

  • It calculates the equilibrium potential (Eion) for any ion in a cell based on concentration gradients

<ul><li><p>Use the <strong>Nernst equation</strong></p></li><li><p>It calculates the equilibrium potential (Eion) for any ion in a cell based on concentration gradients</p></li></ul><p></p>
2
New cards

Why do we need the Goldman-Hodgkin-Katz equation instead of just the Nernst equation?

  • Most membranes are permeable to multiple ions (Na+, K+, Cl−)

  • K+ is usually more permeable than Na+

  • GHK equation accounts for multiple permeabilities → gives a more accurate calculation of membrane potential

  • If the permeabilities of ions are not provided, you can still estimate the membrane potential using the Nernst equation for each ion.

    1. Calculate the equilibrium potential (Eion) for each ion individually.

    2. Compare the Eion values:

      • If all equilibrium potentials are equal, the membrane potential is equal to that value.

      • If they differ, the membrane potential will lie somewhere within the range of the calculated equilibrium potentials.

<ul><li><p>Most membranes are permeable to multiple ions (Na+, K+, Cl−)</p></li><li><p>K+ is usually more permeable than Na+</p></li><li><p><strong>GHK equation</strong> accounts for multiple permeabilities → gives a more accurate calculation of membrane potential</p></li><li><p>If the <strong>permeabilities of ions are not provided</strong>, you can still estimate the membrane potential using the <strong>Nernst equation</strong> for each ion.</p><ol><li><p>Calculate the <strong>equilibrium potential (Eion)</strong> for each ion individually.</p></li><li><p>Compare the Eion values:</p><ul><li><p>If all <strong>equilibrium potentials are equal</strong>, the membrane potential is equal to that value.</p></li><li><p>If they <strong>differ</strong>, the membrane potential will lie <strong>somewhere within the range</strong> of the calculated equilibrium potentials.</p></li></ul></li></ol></li></ul><p></p>
3
New cards

Why study electrical properties of excitable cells?

  • Helps us understand:

    • How fast membrane potential changes when permeability changes

    • Magnitude of Na+, K+, Cl− currents

  • Ion currents act like circuits → create signals in nerve cells

<ul><li><p>Helps us understand:</p><ul><li><p>How fast membrane potential changes when permeability changes</p></li><li><p>Magnitude of Na+, K+, Cl− currents</p></li></ul></li><li><p>Ion currents act like circuits → create signals in nerve cells</p></li></ul><p></p>
4
New cards

Why does the membrane act as a capacitor?

  • Lipid bilayer = insulator (blocks ion diffusion)

  • ECF (+ charge) & ICF (- charge)= good conductors

  • Insulator between two conductors → forms an electrical capacitor (stores separated charge)

    • Thus, membrane has capacity to hold charge

  • Ion channels = conductance pathways

<ul><li><p>Lipid bilayer = insulator (blocks ion diffusion)</p></li><li><p>ECF (+ charge) &amp; ICF (- charge)= good conductors</p></li><li><p>Insulator between two conductors → forms an <strong>electrical</strong> <strong>capacitor</strong> (stores separated charge)</p><ul><li><p>Thus, membrane has capacity to hold charge</p></li></ul></li><li><p>Ion channels = conductance pathways</p></li></ul><p></p>
5
New cards

How do we calculate capacitance of a membrane?

  • Formula: C = q/V

    • q = electric charge in coulombs stored across the capacitor 

    • V = difference in electrical potential

  • Rearranged: q = CV (identify amount of charge stored across a capacitor)

  • 1 Farad stores 1 Coulomb per 1 Volt

  • Biological membranes: Cm = 10⁻⁶ F/cm²

<ul><li><p>Formula: C = q/V</p><ul><li><p>q = electric charge in coulombs stored across the capacitor&nbsp;</p></li><li><p>V = difference in electrical potential</p></li></ul></li><li><p>Rearranged: q = CV (identify amount of charge stored across a capacitor)</p></li><li><p>1 Farad stores 1 Coulomb per 1 Volt</p></li><li><p>Biological membranes: <strong>C<sub>m</sub> = 10⁻⁶ F/cm²</strong></p></li></ul><p></p>
6
New cards

What is the capacitance of a cell with diameter 10 μm?

  1. Main Equation: Ccell = Cm x Acell

  2. Assume Cells are Spherical:

    • Area of sphere: 4πr2 or πd² = 314 μm² = Area of cell

    • Convert μm² → cm² 

    • 1 cm = 10 000 μm → 1 cm² = 10⁸ μm²

    • 314 μm² ÷ 10⁸ = 3.14 × 10⁻⁶ cm²

  1. Plug into Equation: 

    • Ccell = (10⁻⁶ F/cm²) × (3.14 × 10⁻⁶ cm²) = 3.14 × 10⁻¹² F or = 3.14 pF

    • Cm = 10⁻⁶ F/cm² → biological membrane

<ol><li><p>Main Equation: <strong>C<sub>cell</sub>&nbsp;= C<sub>m</sub>&nbsp;x<sub>&nbsp;</sub>A<sub>cell</sub></strong></p></li><li><p>Assume Cells are Spherical:</p><ul><li><p>Area of sphere: 4πr<sup>2</sup> or <strong><u>πd²</u></strong> = 314 μm² = Area of cell</p></li><li><p>Convert μm² → cm²&nbsp;</p></li><li><p>1 cm = 10 000&nbsp;μm&nbsp;→ 1 cm² = 10⁸ μm²</p></li><li><p>314 μm² ÷ 10⁸ = 3.14 × 10⁻⁶ cm²</p></li></ul></li></ol><ol start="3"><li><p>Plug into Equation:&nbsp;</p><ul><li><p>C<sub>cell</sub> = (10⁻⁶ F/cm²) × (3.14 × 10⁻⁶ cm²) = 3.14 × 10⁻¹² F or = <strong><mark data-color="#ef8c8c" style="background-color: rgb(239, 140, 140); color: inherit;">3.14 pF</mark></strong></p></li><li><p>C<sub>m</sub> = 10⁻⁶ F/cm² → biological membrane</p></li></ul></li></ol><p></p>
7
New cards

How do we start calculating charge across a 50 μm glial cell at Vm = −90 mV? (Part 1)

Given Ek=Vm=-90mV; [K+]o=3mM and [K+]i=108mM

Membrane potential = Equilibrium potential

  1. What do we know?

    • Use q = CV to solve for charge (in Coloumbs)

    • Cm = 10⁻⁶ F/cm²

    • Vm=-90mV

  1. What we don’t know?

    • Area of the cell

    • Total capacitance of this cell

    • Charge = q

  1. Area of cell: Acell = 4πr² = 4π(25 μm)² = 7854 μm²

    • Convert: 7854 μm² ÷ 10⁸ = 7.854 × 10⁻⁵ cm²

<p>Membrane potential = Equilibrium potential</p><ol><li><p><u>What do we know? </u></p><ul><li><p>Use <span style="color: red;"><strong>q</strong></span><strong> = CV</strong> to solve for charge (in Coloumbs)</p></li><li><p>C<sub>m</sub> = 10⁻⁶ F/cm²</p></li><li><p>V<sub>m</sub>=-90mV</p></li></ul></li></ol><ol start="2"><li><p><u>What we don’t know?</u></p><ul><li><p>Area of the cell</p></li><li><p>Total capacitance of this cell</p></li><li><p>Charge = q</p></li></ul></li></ol><ol start="3"><li><p><u>Area of cell:</u> A<sub>cell </sub>= 4πr² = 4π(25 μm)² = 7854 μm²</p><ul><li><p>Convert: 7854 μm² ÷ 10⁸ = 7.854 × 10⁻⁵ cm²</p></li></ul></li></ol><p></p>
8
New cards

How much charge must be separated in a 50 μm glial cell at Vm = −90 mV? (Part 2)

  1. Total Capacitance of the Cell: Ccell = Cm x Acell

    • (10⁻⁶ F/cm²)(7.854 × 10⁻⁵ cm²) = 7.854 × 10⁻¹¹ F or 7.854 × 10⁻¹¹ Coloumbs/V

    • Next steps: Find capacitance, then use q = CV

  2. Find Charge: q = CV

    • = (7.854 × 10⁻¹¹ Coloumbs / V)(0.090 V)

    • q = 7.069 × 10⁻¹² C

    • Answer: 7.069 pC

<ol start="4"><li><p><u>Total Capacitance of the Cell:</u> <strong>C<sub>cell</sub>&nbsp;= C<sub>m</sub>&nbsp;x<sub>&nbsp;</sub>A<sub>cell</sub></strong></p><ul><li><p>(10⁻⁶ F/cm²)(7.854 × 10⁻⁵ cm²) = 7.854 × 10⁻¹¹ F or&nbsp;7.854 × 10⁻¹¹ Coloumbs/V</p></li><li><p><span style="background-color: transparent; font-family: Arial, sans-serif, Inter, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, &quot;Segoe UI&quot;, Roboto, &quot;Helvetica Neue&quot;, &quot;Noto Sans&quot;, &quot;Apple Color Emoji&quot;, &quot;Segoe UI Emoji&quot;, &quot;Segoe UI Symbol&quot;, &quot;Noto Color Emoji&quot;; font-size: 1.6rem;">Next steps: Find capacitance, then use q = CV</span></p></li></ul></li><li><p><u>Find Charge:</u> <strong>q = CV</strong> </p><ul><li><p>= (7.854 × 10⁻¹¹ Coloumbs / V)(0.090 V)</p></li><li><p>q = 7.069 × 10⁻¹² C</p></li><li><p>Answer: <strong>7.069 pC</strong></p></li></ul></li></ol><p></p>
9
New cards

How can we determine how many ions move to establish a membrane potential, and does it significantly change ion concentration?

  • Calculating charge separated (q) does not directly tell us how many ions moved.

  • For glial cells, Vm = EK → only K+ moves.

  • Convert charge to moles of K+ using Faraday’s constant:

    • q = 7.069 × 10⁻¹² C

    • 1 mole of a monovalent ion = 96,485 C

    • Moles K+ moved = 7.069 × 10⁻¹² ÷ 96,485 = 7.326 × 10⁻¹⁷ mol

  • Convert moles to ions using Avogadro’s number:

    • 7.326 × 10⁻¹⁷ × 6.022 × 10²³ = 4.4 × 10⁷ K+ ions

  • Effect on [K+]: Very small → negligible impact on overall ion concentration

<ul><li><p>Calculating <strong>charge separated (q)</strong> does <strong>not directly tell us how many ions moved</strong>.</p></li><li><p>For <strong>glial cells</strong>, Vm = EK → only K+ moves.</p></li><li><p><strong>Convert charge to moles of K+</strong> using <strong>Faraday’s constant</strong>:</p><ul><li><p>q = 7.069 × 10⁻¹² C</p></li><li><p>1 mole of a monovalent ion = 96,485 C</p></li><li><p>Moles K+ moved = 7.069 × 10⁻¹² ÷ 96,485 = 7.326 × 10⁻¹⁷ mol</p></li></ul></li><li><p><strong>Convert moles to ions</strong> using Avogadro’s number:</p><ul><li><p>7.326 × 10⁻¹⁷ × 6.022 × 10²³ = 4.4 × 10⁷ K+ ions</p></li></ul></li></ul><ul><li><p><strong>Effect on [K+]</strong>: Very small → negligible impact on overall ion concentration</p></li></ul><p></p>
10
New cards

Does the movement of K+ to establish Vm significantly change K+ concentration in glial cells?

  • K+ moved to establish Vm = 7.326 × 10⁻¹⁷ mol

  • Step 1: Calculate total K+ initially in cell

    • Intracellular [K+] = 108 mM = 0.108 mol/L

    • Cell volume = sphere: 4/3 π r³ = 4/3 π (25 μm)³ = 65,550 μm³

    • Convert to liters: 65,550 μm³ ÷ 10¹⁵ = 6.555 × 10⁻¹¹ L

  • Total K+ initially: 0.108 mol/L × 6.555 × 10⁻¹¹ L = 7.079 × 10⁻¹² mol

  • Compare to K+ moved: 7.326 × 10⁻¹⁷ mol → very small fraction → negligible effect on [K+]

Note:
1 mL = 1 cm3

<ul><li><p>K+ moved to establish Vm = 7.326 × 10⁻¹⁷ mol</p></li><li><p><strong>Step 1: Calculate total K+ initially in cell</strong></p><ul><li><p>Intracellular [K+] = 108 mM = 0.108 mol/L</p></li><li><p>Cell volume = sphere: 4/3 π r³ = 4/3 π (25 μm)³ = 65,550 μm³</p></li><li><p>Convert to liters: 65,550 μm³ ÷ 10¹⁵ = 6.555 × 10⁻¹¹ L</p></li></ul></li><li><p>Total K+ initially: 0.108 mol/L × 6.555 × 10⁻¹¹ L = 7.079 × 10⁻¹² mol</p></li><li><p>Compare to K+ moved: 7.326 × 10⁻¹⁷ mol → very small fraction → negligible effect on [K+]</p></li></ul><p></p><p><strong><mark data-color="#ffa5a5" style="background-color: rgb(255, 165, 165); color: inherit;">Note: <br>1 mL = 1 cm<sup>3</sup></mark></strong></p>
11
New cards

What % of K+ ions leave glial cells to establish Vm = −90 mV, and what does this mean in practical terms?

  • % moved = (7.326 × 10⁻¹⁷ mol ÷ 7.079 × 10⁻¹² mol) × 100

  • = 0.001%

  • Meaning: For every 1,000,000 K+ ions, only ~10 ions move to establish Vm = EK = −90 mV

  • Conclusion: Ion movement for Vm does not significantly change [K+] inside the cell

<ul><li><p>% moved = (7.326 × 10⁻¹⁷ mol ÷ 7.079 × 10⁻¹² mol) × 100</p></li><li><p>= <strong>0.001%</strong></p></li><li><p>Meaning: For every <strong>1,000,000 K+ ions</strong>, only <strong>~10 ions</strong> move to establish Vm = EK = −90 mV</p></li><li><p>Conclusion: Ion movement for Vm <strong>does not significantly change [K+] inside the cell</strong></p></li></ul><p></p>