1/11
Why so much random BS
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Integration by Parts
\begin{aligned}
&\int u\,dv = u\,v \;-\;\int v\,du\\[6pt]
&\text{Hint: Choose }u\text{ (Logarithmic, Inverse, Algebraic, Trig, Exponential)}\\
&\quad\text{and }dv\text{ so that }du\text{ and }v\text{ simplify the integral.}
\end{aligned}
Partial Fractions
\begin{aligned}
&\frac{1}{(c x + d)\,(h x + k)}\\
&\quad= \frac{A}{c x + d}
+ \frac{B}{h x + k}
\\[8pt]
&\text{Multiply both sides by }(c x + d)(h x + k)\text{:}\\
&\quad1
= A\,(h x + k)
+ B\,(c x + d)
\\[6pt]
&\text{Equate coefficients:}\\
&\quad A\,h + B\,c = 0,\\
&\quad A\,k + B\,d = 1.
\\[6pt]
&\text{Hint: Clear denominators, then solve this linear system for }A,B.
\end{aligned}
Volume
\begin{aligned}
&\text{Disc Method: }
V=\pi\int_{a}^{b}\bigl[r(x)\bigr]^{2}\,dx\\
&\text{Washer Method: }
V=\pi\int_{a}^{b}\Bigl[R(x)^{2}-r(x)^{2}\Bigr]\,dx\\
&\text{Shell Method: }
V=2\pi\int_{a}^{b}r(x)\,h(x)\,dx\\
&\text{Cross‐Section Method: }
V=\int_{a}^{b}A(x)\,dx\\[6pt]
&\text{Hint: Use Disc/Washer when slicing perpendicular to the axis;}\\
&\text{use Shell when slicing parallel;}\\
&\text{use Cross‐Section when slices have known area }A(x).
\end{aligned}
Alternating Series Error Bound
\begin{aligned}
&\text{For an alternating series satisfying the AST conditions,}\\
&\quad\bigl|R_n\bigr|\;=\;\Bigl|\sum_{k=n+1}^\infty(-1)^k a_k\Bigr|
\;\le\;a_{n+1}.\\[6pt]
&\text{Hint: The magnitude of the remainder is at most the next term.}
\end{aligned}
Lagrange Error Bound
\begin{aligned}
&\text{If }f\in C^{\,n+1}[a,b],\text{ then the Taylor remainder }R_n\text{ at }b\text{ satisfies}\\
&\quad
\bigl|R_n\bigr|\;\le\;\frac{\max_{c\in[a,b]}\bigl|f^{(n+1)}(c)\bigr|}{(n+1)!}\,(b-a)^{n+1}.\\[6pt]
&\text{Hint: Bound the \((n+1)\)th derivative on \([a,b]\) and divide by \((n+1)!\).}
\end{aligned}
Logistical Growth
\begin{aligned}
&\frac{dP}{dt} = k\,P\,(M - P),\\
&P(t) = \frac{M}{1 + C e^{-k t}},\\[6pt]
&\text{where }P(t)\text{ is the population at time }t,\\
&\quad k\text{ is the intrinsic growth rate constant},\\
&\quad M\text{ is the carrying capacity},\\
&\quad C\text{ is set by the initial condition }P(0).
\end{aligned}
Parametric First Derivative
\frac{dy}{dx}
= \frac{\displaystyle \frac{dy}{dt}}
{\displaystyle \frac{dx}{dt}}
\quad(\text{provided }dx/dt\neq0).
Parametric Second Derivative
\frac{d^2y}{dx^2}
= \frac{d}{dx}\!\Bigl(\frac{dy}{dx}\Bigr)
= \frac{\displaystyle \frac{d}{dt}\!\bigl(\frac{dy}{dx}\bigr)}
{\displaystyle \frac{dx}{dt}}
Polar ↔ Rectangular Conversion
\begin{aligned}
&\text{Rectangular to Polar:}
&&r = \sqrt{x^2 + y^2},
&\quad\theta = \arctan\!\bigl(\tfrac{y}{x}\bigr).\\
&\text{Polar to Rectangular:}
&&x = r\cos\theta,
&\quad y = r\sin\theta.
\end{aligned}
Arc Length
\begin{aligned}
\text{Cartesian:} \quad
&L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}}\,dx, \\[8pt]
\text{Parametric:} \quad
&L = \int_{t_{1}}^{t_{2}} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}}\,dt. \\[8pt]
&\text{Hint: In the parametric form, } \frac{dx}{dt} \text{ and } \frac{dy}{dt} \text{ give the components of motion.}
\end{aligned}
Speed & Distance Traveled
\begin{aligned}
\text{Cartesian:} \quad
&L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}}\,dx, \\[8pt]
\text{Parametric:} \quad
&L = \int_{t_{1}}^{t_{2}} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}}\,dt. \\[8pt]
&\text{Hint: In the parametric form, } \frac{dx}{dt} \text{ and } \frac{dy}{dt} \text{ give the components of motion.}
\end{aligned}
Remove the integral operative for speed
Polar Area
\begin{aligned}
\text{Polar Area:} \quad
&A = \tfrac{1}{2} \int_{\theta_{1}}^{\theta_{2}} \bigl[r(\theta)\bigr]^2\, d\theta \\[6pt]
\text{Hint:} \quad
&\text{Divide the region into infinitesimal sectors of angle } d\theta\,.
\end{aligned}