1/75
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
∫cosxdx
sinx+c
∫sinxdx
-cosx+c
∫sec²xdx
tanx+c
∫csc² xdx
-cotx+c
∫secxtanxdx
secx+c
∫cscxcotxdx
-cscx+c
∫dx/√(1-x² )
arcsinx+c
∫dx/(1+x² )
arctanx+c
∫dx/(x√(x²-1))
arcsecx+c
∫b^x dx
(b^x/lnb)+c
∫(1/x)dx
ln|x|+c
∫e^x dx
e^x+c
d/dx (sinx)
cosx
d/dx (cosx)
-sinx
d/dx (tanx)
sec² x
d/dx (cotx)
-csc² x
d/dx (secx)
secxtanx
d/dx (cscx)
-cscxcotx
d/dx (arcsinx)
1/√(1-x^2 )
d/dx (arccosx)
-1/√(1-x^2 )
d/dx (arctanx)
1/(1+x^2 )
d/dx (arccotx)
-1/(1+x^2 )
d/dx (arcsecx)
1/(|x| √(x^2-1))
d/dx (arccscx)
-1/(|x| √(x^2-1))
d/dx (b^x )
(b^x)(lnb)
d/dx (lnx)
1/x
d/dx (log₂ x)
1/(xln2)
d/dx (e^x )
e^x
d/dx(g(x)) if g(x) = f⁻¹(x)
1/(f'(g(x))
sin(0,2π)
0
sin(π/6)
1/2
sin(π/4)
√2/2
sin(π/3)
√3/2
sin(π/2)
1
sin(π)
0
sin(3π/2)
-1
cos(0,2π)
1
cos(π/6)
√3/2
cos(π/4)
√2/2
cos(π/3)
1/2
cos(π/2)
0
cos(π)
-1
cos(3π/2)
0
tan(0,2π)
0
tan(π/6)
√3/3
tan(π/4)
1
tan(π/3)
√3
tan(π/2)
∅
tan(π)
0
tan(3π/2)
∅
(lim)(x→∞)(1+(1/x))^(x)
e
Limit Definition of Derivative f'(x) =
(lim)(h→0) (f(x+h) - f(x))/h
Limit Definition of Derivative f'(a) =
(lim)(h→0) (f(a+h) - f(a))/h
Limit Definition of Derivative f'(a) =
(lim)(x→a) (f(x) - f(a))/(x - a)
Speed is increasing when ….
Velocity and Acceleration are the same sign
Speed is decreasing when ….
Velocity and Acceleration are opposite signs
Speed
|v(t)|
Displacement
∫v(t)dt from a to b
Total Distance
∫|v(t)|dt from a to b
Volume (Washer Method)
π∫(R^2 - r^2)dx from a to b
Volume (Cross Section)
∫A(x)dx from a to b
FTC: ∫f'(x)dx from a to b
f(b) - f(a)
Position at b: P(b) =
P(b) = P(a) + ∫v(t)dt from a to b
Value at a Point: f(b) =
f(b) = f(a) + ∫f'(x)dx from a to b
2nd FTC: g(x) = ∫f(t)dt from a to x
g'(x) = f(x)
Average Rate of Change:
(f(b) - f(a))/(b - a)
MVT:
f'(c) = (f(b) - f(a))/(b - a) if continuous and differentiable
Average Value:
(∫f(x)dx from a to b)/(b - a)
Extreme Value Theorem:
If it is a closed interval [a, b], make a table with critical points and end points
Definition of Continuity
(lim)(x→a^+)f(x) = (lim)(x→a^-)f(x) = f(a)
Tangent Line / Linear Approximation
y - y1 = m(x - x1)
Increasing / Decreasing for g given g':
g' is positive → g is increasing
g' is negative → g is decreasing
Concave UP / Concave DOWN for g given g':
g' is increasing → g is CONCAVE UP
g' is decreasing → g is CONCAVE DOWN
Points of Inflection for g given g':
g' is at a min or max (g' goes from increasing to decreasing or decreasing to increasing)