1/13
Limits and few deriv`atives for rn(will be updated)
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
lim [sin(x)/x] =
1
lim [(cos(x)-1)/x] =
1
lim [sin(ax)/x] =
a
lim [sin(ax)/sin(bx)] =
a/b
d/dx[sin(x) ] =
cos(x)
d/dx[cosx] =
-sin(x)
d/dx[tanx] =
sec²x
d/dx[lnx] =
1/x
d/dx[ex]
ex
d/dx[cotx]
-csc^2
d/dx[secx]
(tan(x) )(sec(x))
d/dx[cscx]
(-cot(x))(csc(x))
d/dx[bx)
(ln(b))(bx)
d/dx[logb(x)]
1/((ln(b))(x))