1/32
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
p’/rho0c0
v’ =
p’ = sqrt(2)prms
p’ from prms
drho/dt + grad dot pU = 0
conservation of mass equation
drho’/dt + rho0 grad dot U = 0
linearized mass
rho0 dU’/dt + gradp’ = 0
linearized momentum
1/c0(d²p’/dt) - grad²p’ = 0
wave equation
p’ = c0² rho’
p’ rho’ relation
p’(t) = sum Ancos(wnt + phin)
p’(t) summation
F(w) = int f(t)e^-iwt dt
fourier transform
e^iw0t - e^-iw0t
sin(w0t)
int f(t) delta(t-t0) dt = f(t0)
shifting property of dirac delta
F(w)e^-iwt0
fourier transform f(t-t0)
F(w-w0)
fourier transform f(t)e^iw0t
1/abs(a) F(w/a)
fourier transform f(at)
(iw)^nF(w)
Fourier transform dnf(t)/dtn
dnF(w)/dwn
fourier transform (-it)^nf(t)
1
fourier transform dirac delta
fupp = 2^(1/N)flow
1/n octave band
k²P(x,w) +grad²P(x,w) = 0
helmholtz equation
k = w/c0 = 2pif/c0 = 2pi/lambda
k in the helmholtz equation aka wave number
I = p’V’ = p’n’nhat = (p’)²nhat/rho0c0
acoustic intensity
Pac = surface int IdS
acoustic power
1/r
1-d solution decays with
1/sqrt(r )
cylindrical waves decay with
V’ = grad phi
assumption we make to get wave equation in velocity potential, no vorticity
Q(x)H(t-t0)
right side of mass equation for continuous sources starting at t0
dirac delta
derivative of heaviside
mass = Q
mass source effects equation monopole
momentum = F
momentum source effects dipole
dQ/dt - gradF
right side of wave equation with monopole and dipole sources
p’(x,t) = 1/4pic0² volume int s(y, t- abs(x-y)/c0) dv/abs(x-y)
using free space greens function to find p’
d2rho’/dt2 - c0² d2rho’/dxidxi = d2Tij/dxidxj
lighthills wave equation
Tij = rhouiuj + (p’-c0²rho’)deltaij - tauij
lighthill stress tensor, turbulence, entropy fluct, viscous stresses