DOMAIN BACTERIA AND DOMAIN ARCHAEA BIOL 1110

0.0(0)
studied byStudied by 0 people
0.0(0)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/10

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

11 Terms

1
New cards

What diversity do prokaryotes display in size and shape?

A1. Prokaryotes vary widely:

  • Shapes: Cocci (spherical), bacilli (rod-shaped), spirilla (spiral).

  • Size: Typically 0.5–5 µm — much smaller than eukaryotic cells.

  • Despite simplicity, they show enormous morphological and metabolic diversity.

<p><strong>A1.</strong> Prokaryotes vary widely:</p><ul><li><p><strong>Shapes:</strong> Cocci (spherical), bacilli (rod-shaped), spirilla (spiral).</p></li><li><p><strong>Size:</strong> Typically <strong>0.5–5 µm</strong> — much smaller than eukaryotic cells.</p></li><li><p>Despite simplicity, they show <strong>enormous morphological and metabolic diversity</strong>.</p></li></ul><p></p>
2
New cards

Q2. How is the prokaryotic cell wall unique in structure and function compared to eukaryotes?

A2.

  • Provides shape, protection, and prevents bursting in hypotonic environments.

  • Bacteria: Have peptidoglycan (sugar–peptide polymer).

    • Gram-positive: Thick layer.

    • Gram-negative: Thin layer + outer membrane (lipopolysaccharides).

  • Archaea: Lack peptidoglycan; have pseudopeptidoglycan or protein walls.

<p><strong>A2.</strong></p><ul><li><p>Provides <strong>shape, protection</strong>, and prevents <strong>bursting in hypotonic environments</strong>.</p></li><li><p><strong>Bacteria:</strong> Have <strong>peptidoglycan</strong> (sugar–peptide polymer).</p><ul><li><p><strong>Gram-positive:</strong> Thick layer.</p></li><li><p><strong>Gram-negative:</strong> Thin layer + outer membrane (lipopolysaccharides).</p></li></ul></li><li><p><strong>Archaea:</strong> Lack peptidoglycan; have <strong>pseudopeptidoglycan</strong> or <strong>protein walls</strong>.</p></li></ul><p></p>
3
New cards

Q3. How is the internal organization of prokaryotes different from that of eukaryotes?

A3.

  • No membrane-bound organelles or nucleus.

  • DNA in a nucleoid (single circular chromosome).

  • May have plasmids (small DNA rings).

  • Ribosomes present but smaller (70S).

  • Specialized membranes may perform metabolic functions (e.g., photosynthesis, respiration).

S

<p><strong>A3.</strong></p><ul><li><p><strong>No membrane-bound organelles</strong> or nucleus.</p></li><li><p>DNA in a <strong>nucleoid</strong> (single circular chromosome).</p></li><li><p>May have <strong>plasmids</strong> (small DNA rings).</p></li><li><p><strong>Ribosomes</strong> present but smaller (70S).</p></li><li><p>Specialized membranes may perform metabolic functions (e.g., photosynthesis, respiration).</p></li></ul><p>S</p>
4
New cards

Q4. How can prokaryotes exist in populations of immense size?

A4.

  • Rapid reproduction by binary fission (every 1–3 hours).

  • Small size allows quick nutrient uptake.

  • Mutations accumulate rapidly, generating diversity.

  • Can form endospores to survive harsh conditions.

<p><strong>A4.</strong></p><ul><li><p><strong>Rapid reproduction</strong> by binary fission (every 1–3 hours).</p></li><li><p><strong>Small size</strong> allows quick nutrient uptake.</p></li><li><p><strong>Mutations accumulate rapidly</strong>, generating diversity.</p></li><li><p>Can form <strong>endospores</strong> to survive harsh conditions.</p></li></ul><p></p>
5
New cards

Q5. What are the four major modes of nutrition in prokaryotes?

Mode

Energy Source

Carbon Source

Example

Photoautotroph

Light

CO₂

Cyanobacteria

Chemoautotroph

Inorganic chemicals

CO₂

Nitrosomonas

Photoheterotroph

Light

Organic compounds

Rhodobacter

Chemoheterotroph

Organic compounds

Organic compounds

Most bacteria, animals

<table style="min-width: 100px;"><colgroup><col style="min-width: 25px;"><col style="min-width: 25px;"><col style="min-width: 25px;"><col style="min-width: 25px;"></colgroup><tbody><tr><th colspan="1" rowspan="1"><p><strong>Mode</strong></p></th><th colspan="1" rowspan="1"><p><strong>Energy Source</strong></p></th><th colspan="1" rowspan="1"><p><strong>Carbon Source</strong></p></th><th colspan="1" rowspan="1"><p><strong>Example</strong></p></th></tr></tbody></table><table style="min-width: 100px;"><colgroup><col style="min-width: 25px;"><col style="min-width: 25px;"><col style="min-width: 25px;"><col style="min-width: 25px;"></colgroup><tbody><tr><td colspan="1" rowspan="1"><p><strong>Photoautotroph</strong></p></td><td colspan="1" rowspan="1"><p>Light</p></td><td colspan="1" rowspan="1"><p>CO₂</p></td><td colspan="1" rowspan="1"><p>Cyanobacteria</p></td></tr></tbody></table><table style="min-width: 100px;"><colgroup><col style="min-width: 25px;"><col style="min-width: 25px;"><col style="min-width: 25px;"><col style="min-width: 25px;"></colgroup><tbody><tr><td colspan="1" rowspan="1"><p><strong>Chemoautotroph</strong></p></td><td colspan="1" rowspan="1"><p>Inorganic chemicals</p></td><td colspan="1" rowspan="1"><p>CO₂</p></td><td colspan="1" rowspan="1"><p>Nitrosomonas</p></td></tr></tbody></table><table style="min-width: 100px;"><colgroup><col style="min-width: 25px;"><col style="min-width: 25px;"><col style="min-width: 25px;"><col style="min-width: 25px;"></colgroup><tbody><tr><td colspan="1" rowspan="1"><p><strong>Photoheterotroph</strong></p></td><td colspan="1" rowspan="1"><p>Light</p></td><td colspan="1" rowspan="1"><p>Organic compounds</p></td><td colspan="1" rowspan="1"><p>Rhodobacter</p></td></tr></tbody></table><table style="min-width: 100px;"><colgroup><col style="min-width: 25px;"><col style="min-width: 25px;"><col style="min-width: 25px;"><col style="min-width: 25px;"></colgroup><tbody><tr><td colspan="1" rowspan="1"><p><strong>Chemoheterotroph</strong></p></td><td colspan="1" rowspan="1"><p>Organic compounds</p></td><td colspan="1" rowspan="1"><p>Organic compounds</p></td><td colspan="1" rowspan="1"><p>Most bacteria, animals</p></td></tr></tbody></table><p></p>
6
New cards

How do prokaryotes differ in their oxygen requirements?

Type

Description

Example

Obligate aerobes

Require O₂ for respiration

Mycobacterium

Obligate anaerobes

Poisoned by O₂; use fermentation or anaerobic respiration

Clostridium

Facultative anaerobes

Can use O₂ when available, but survive without it

E. coli

<table style="min-width: 75px;"><colgroup><col style="min-width: 25px;"><col style="min-width: 25px;"><col style="min-width: 25px;"></colgroup><tbody><tr><th colspan="1" rowspan="1"><p><strong>Type</strong></p></th><th colspan="1" rowspan="1"><p><strong>Description</strong></p></th><th colspan="1" rowspan="1"><p><strong>Example</strong></p></th></tr><tr><td colspan="1" rowspan="1"><p><strong>Obligate aerobes</strong></p></td><td colspan="1" rowspan="1"><p>Require O₂ for respiration</p></td><td colspan="1" rowspan="1"><p>Mycobacterium</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>Obligate anaerobes</strong></p></td><td colspan="1" rowspan="1"><p>Poisoned by O₂; use fermentation or anaerobic respiration</p></td><td colspan="1" rowspan="1"><p>Clostridium</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>Facultative anaerobes</strong></p></td><td colspan="1" rowspan="1"><p>Can use O₂ when available, but survive without it</p></td><td colspan="1" rowspan="1"><p>E. coli</p></td></tr></tbody></table><p></p>
7
New cards

Which organisms perform nitrogen fixation, and why is it vital?

  • Certain prokaryotes (e.g., Cyanobacteria, Rhizobium) convert N₂ → NH₃.

  • Provides usable nitrogen for plants and other organisms — essential for amino acids & nucleotides

8
New cards

Q8. Describe three examples of metabolic cooperation between prokaryotes.

  • Biofilms: Communities of bacteria sharing nutrients and protection.

  • Heterocysts: Specialized cells in cyanobacteria for nitrogen fixation.

  • Sulfur bacteria & heterotrophs: Exchange nutrients in sediments.

9
New cards

Q9. What are unique features of organisms in Domain Archaea?

  • No peptidoglycan in cell walls.

  • Membrane lipids have branched hydrocarbons.

  • Extreme environments:

    • Thermophiles: Hot springs.

    • Halophiles: High salt.

    • Methanogens: Anaerobic, produce methane.

  • Genetic machinery (RNA polymerases, ribosomes) resemble Eukarya more than Bacteria.

10
New cards

Q10. What roles do bacteria play in the biosphere?

  • Decomposers: Break down dead matter, recycle nutrients.

  • Nitrogen fixation: Convert N₂ → usable nitrogen.

  • Producers: Photosynthetic bacteria form base of food chains.

  • Symbionts: Live in mutualistic relationships (e.g., gut bacteria).

11
New cards

Q11. How do bacteria impact humans?

A11.
Beneficial:

  • Aid digestion, synthesize vitamins.

  • Used in biotechnology, food production (yogurt, cheese), and bioremediation.
    Harmful:

  • Cause diseases (e.g., tuberculosis, strep throat).

  • Some release toxins (endotoxins/exotoxins).

  • Antibiotic resistance is an increasing concern.