MCR3U1 - Unit 1

0.0(0)
studied byStudied by 10 people
0.0(0)
linked notesView linked note
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/16

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced
Call with Kai

No study sessions yet.

17 Terms

1
New cards

State the parent function of a linear function

Pf: f(x) = x

Ff: f(x) = mx + b

X

Y

1

1

2

2

3

3

4

4

5

5

2
New cards

Sketch out the parent function of a linear function. State the domain and range of the function

D: {XER}

R: {YER}

<p>D: {XER}</p><p>R: {YER}</p>
3
New cards

State the parent function of a Quadratic Function

Pf: f(x) = x²

Ff: f(x) = a(x-h)²+k

X

Y

-2

4

-1

1

0

0

1

1

2

4

4
New cards

Sketch out the parent function of a Quadratic Function. State the domain and range of the function

D: {XER}

R: {YER | y >= k} - (+a)

R: {YER | y <= k} - (-a)

<p>D: {XER}</p><p>R: {YER | y &gt;= k} - (+a)</p><p>R: {YER | y &lt;= k} - (-a)</p>
5
New cards

State the parent function of a Absolute Value Function

Pf: f(x) = |x|

Ff: f(x) = a|k(x-d)| + c

X

Y

-3

3

-2

2

-1

1

0

0

1

1

2

2

3

3

6
New cards

Sketch out the parent function of an Absolute Function. State the domain and range of the function

D: {XER}

R: {YER | y >= c} - (+a)

R: {YER | y <= c} - (-a)

<p>D: {XER}</p><p>R: {YER | y &gt;= c} - (+a)</p><p>R: {YER | y &lt;= c} - (-a)</p>
7
New cards

State the parent function of a Square Root Function

Pf: f(x) = √x

Ff: f(x) = a√k(x-d) + c

X

Y

0

0

1

1

4

2

9

3

<p><strong>Pf: </strong>f(x) = √x</p><p><strong>Ff: </strong>f(x) = a√k(x-d) + c</p><table style="minWidth: 50px"><colgroup><col><col></colgroup><tbody><tr><th colspan="1" rowspan="1"><p>X</p></th><th colspan="1" rowspan="1"><p>Y</p></th></tr><tr><td colspan="1" rowspan="1"><p>0</p></td><td colspan="1" rowspan="1"><p>0</p></td></tr><tr><td colspan="1" rowspan="1"><p>1</p></td><td colspan="1" rowspan="1"><p>1</p></td></tr><tr><td colspan="1" rowspan="1"><p>4</p></td><td colspan="1" rowspan="1"><p>2</p></td></tr><tr><td colspan="1" rowspan="1"><p>9</p></td><td colspan="1" rowspan="1"><p>3</p></td></tr></tbody></table>
8
New cards

Sketch out the parent function of an Square Root Function. State the domain and range of the funciton

D: {XER | x >= d} if k is (+)

D: {XER | x <= d} if k is (-)

R: {YER | y >= c} if a is (+)

R: {YER | x <= c} if a is (-)

<p>D: <strong>{XER | x &gt;= d} </strong>if k is (+)</p><p>D: <strong>{XER | x &lt;= d} </strong>if k is (-)</p><p>R: <strong>{YER | y &gt;= c}</strong> if a is (+)</p><p>R: <strong>{YER | x &lt;= c}</strong> if a is (-)</p>
9
New cards

State the parent function of a reciprocal function

Pf: f(x) = 1/x

Ff: f(x) = a(k/x-d) + c

X

Y

1

1

-1

-1

10
New cards

Sketch the parent function of a Reciprocal Function. State the domain and range of the function

D: {XER | x ≠ d}

R: {YER | y ≠ c}

<p>D: {XER | x ≠ d}</p><p>R: {YER | y ≠ c}</p>
11
New cards

What are the restrictions for a square root function and a reciprocal function

Square Root Function:

  • The value inside the square root cannot be less than 0

Reciprocal Function":

  • The value in the denominator cannot equal 0

12
New cards

Vertical Compression

0 < a < 1

13
New cards

Vertical Expansion/Stretch

a > 1

14
New cards

Reflection off the x-axis

a = (-)

15
New cards

Horizontal Compression

k > 1 —> graph is horizontally compressed b.a.f.o k/1

16
New cards

Horizontal Expansion/Stretch

0 < k < 1—> graph is horizontally stretched b.a.f.o k/1

17
New cards

Describe the following function:

f(x) = -1[-2(x+5)²]-1/2

a = -1

k = -2

d = -5

c = -1/2

  • Reflecting on the x and y axis

  • Horizontally compressed by b.a.f.o of ½

  • Horizontally translated 5 units to the left

  • Vertically translated ½ or 0.5 units down

Explore top flashcards