Trigonometric Identities

0.0(0)
studied byStudied by 1 person
0.0(0)
full-widthCall with Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/34

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced
Call with Kai

No study sessions yet.

35 Terms

1
New cards

Even Identity for sin

\sin(\theta) = -\sin(90 - \theta)

2
New cards

Odd Identity for sin

\sin(-\theta) = -\sin(\theta)

3
New cards

Odd Identity for csc

\csc(-\theta) = -\csc(\theta)

4
New cards

Odd Identity for tan

\tan(-\theta) = -\tan(\theta)

5
New cards

Odd Identity for cot

\cot(-\theta) = -\cot(\theta)

6
New cards

Cofunction Identity for csc

\csc(90 - \theta) = \sec(\theta)

7
New cards

Cofunction Identity for sec

\sec(90 - \theta) = \csc(\theta)

8
New cards

Cofunction Identity for tan

\tan(90 - \theta) = \cot(\theta)

9
New cards

Cofunction Identity for cot

\cot(90 - \theta) = \tan(\theta)

10
New cards

Sum Formula for sin

\sin(u + v) = \sin(u)\cos(v) + \cos(u)\sin(v)

11
New cards

Difference Formula for cos

\cos(u - v) = \cos(u)\cos(v) + \sin(u)\sin(v)

12
New cards

Even Identity for cos

\cos(-\theta) = \cos(\theta)

13
New cards

Even Identity for sec

\sec(-\theta) = \sec(\theta)

14
New cards

Cofunction Identity (sin and cos)

\sin(\theta) = \cos(90^\circ - \theta),\ \cos(\theta) = \sin(90^\circ - \theta)

15
New cards

Cofunction Identity (csc and sec)

\csc(\theta) = \sec(90^\circ - \theta),\ \sec(\theta) = \csc(90^\circ - \theta)

16
New cards

Cofunction Identity (tan and cot)

\tan(\theta) = \cot(90^\circ - \theta),\ \cot(\theta) = \tan(90^\circ - \theta)

17
New cards

Sum Formula (sin)

\sin(u + v) = \sin(u)\cos(v) + \cos(u)\sin(v)

18
New cards

Difference Formula (sin)

\sin(u - v) = \sin(u)\cos(v) - \cos(u)\sin(v)

19
New cards

Sum Formula (cos)

\cos(u + v) = \cos(u)\cos(v) - \sin(u)\sin(v)

20
New cards

Difference Formula (cos)

\cos(u - v) = \cos(u)\cos(v) + \sin(u)\sin(v)

21
New cards

Sum Formula (tan)

\tan(u + v) = \frac{\tan(u) + \tan(v)}{1 - \tan(u)\tan(v)}

22
New cards

Difference Formula (tan)

\tan(u - v) = \frac{\tan(u) - \tan(v)}{1 + \tan(u)\tan(v)}

23
New cards

Double Angle Formula (sin)

\sin(2\theta) = 2\sin(\theta)\cos(\theta)

24
New cards

Double Angle Formula (cos)

\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = 2\cos^2(\theta) - 1 = 1 - 2\sin^2(\theta)

25
New cards

Double Angle Formula (tan)

\tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)}

26
New cards

Half-Angle Formula (sin)

\sin\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1 - \cos(\theta)}{2}}

27
New cards

Half-Angle Formula (cos)

\cos\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1 + \cos(\theta)}{2}}

28
New cards

Half-Angle Formula (tan)

\tan\left(\frac{\theta}{2}\right) = \frac{1 - \cos(\theta)}{\sin(\theta)} = \frac{\sin(\theta)}{1 + \cos(\theta)}

29
New cards

Product-to-Sum (sin)

\sin(u)\sin(v) = \tfrac{1}{2}[\cos(u - v) - \cos(u + v)]

30
New cards

Product-to-Sum (cos)

\cos(u)\cos(v) = \tfrac{1}{2}[\cos(u - v) + \cos(u + v)]

31
New cards

Product-to-Sum (sin and cos)

\sin(u)\cos(v) = \tfrac{1}{2}[\sin(u + v) + \sin(u - v)]

32
New cards

Sum-to-Product (sin)

\sin(u) + \sin(v) = 2\sin\left(\frac{u + v}{2}\right)\cos\left(\frac{u - v}{2}\right)

33
New cards

Sum-to-Product (sin difference)

\sin(u) - \sin(v) = 2\cos\left(\frac{u + v}{2}\right)\sin\left(\frac{u - v}{2}\right)

34
New cards

Sum-to-Product (cos)

\cos(u) + \cos(v) = 2\cos\left(\frac{u + v}{2}\right)\cos\left(\frac{u - v}{2}\right)

35
New cards

Sum-to-Product (cos difference)

\cos(u) - \cos(v) = -2\sin\left(\frac{u + v}{2}\right)\sin\left(\frac{u - v}{2}\right)