1/34
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Even Identity for sin
\sin(\theta) = -\sin(90 - \theta)
Odd Identity for sin
\sin(-\theta) = -\sin(\theta)
Odd Identity for csc
\csc(-\theta) = -\csc(\theta)
Odd Identity for tan
\tan(-\theta) = -\tan(\theta)
Odd Identity for cot
\cot(-\theta) = -\cot(\theta)
Cofunction Identity for csc
\csc(90 - \theta) = \sec(\theta)
Cofunction Identity for sec
\sec(90 - \theta) = \csc(\theta)
Cofunction Identity for tan
\tan(90 - \theta) = \cot(\theta)
Cofunction Identity for cot
\cot(90 - \theta) = \tan(\theta)
Sum Formula for sin
\sin(u + v) = \sin(u)\cos(v) + \cos(u)\sin(v)
Difference Formula for cos
\cos(u - v) = \cos(u)\cos(v) + \sin(u)\sin(v)
Even Identity for cos
\cos(-\theta) = \cos(\theta)
Even Identity for sec
\sec(-\theta) = \sec(\theta)
Cofunction Identity (sin and cos)
\sin(\theta) = \cos(90^\circ - \theta),\ \cos(\theta) = \sin(90^\circ - \theta)
Cofunction Identity (csc and sec)
\csc(\theta) = \sec(90^\circ - \theta),\ \sec(\theta) = \csc(90^\circ - \theta)
Cofunction Identity (tan and cot)
\tan(\theta) = \cot(90^\circ - \theta),\ \cot(\theta) = \tan(90^\circ - \theta)
Sum Formula (sin)
\sin(u + v) = \sin(u)\cos(v) + \cos(u)\sin(v)
Difference Formula (sin)
\sin(u - v) = \sin(u)\cos(v) - \cos(u)\sin(v)
Sum Formula (cos)
\cos(u + v) = \cos(u)\cos(v) - \sin(u)\sin(v)
Difference Formula (cos)
\cos(u - v) = \cos(u)\cos(v) + \sin(u)\sin(v)
Sum Formula (tan)
\tan(u + v) = \frac{\tan(u) + \tan(v)}{1 - \tan(u)\tan(v)}
Difference Formula (tan)
\tan(u - v) = \frac{\tan(u) - \tan(v)}{1 + \tan(u)\tan(v)}
Double Angle Formula (sin)
\sin(2\theta) = 2\sin(\theta)\cos(\theta)
Double Angle Formula (cos)
\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = 2\cos^2(\theta) - 1 = 1 - 2\sin^2(\theta)
Double Angle Formula (tan)
\tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)}
Half-Angle Formula (sin)
\sin\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1 - \cos(\theta)}{2}}
Half-Angle Formula (cos)
\cos\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1 + \cos(\theta)}{2}}
Half-Angle Formula (tan)
\tan\left(\frac{\theta}{2}\right) = \frac{1 - \cos(\theta)}{\sin(\theta)} = \frac{\sin(\theta)}{1 + \cos(\theta)}
Product-to-Sum (sin)
\sin(u)\sin(v) = \tfrac{1}{2}[\cos(u - v) - \cos(u + v)]
Product-to-Sum (cos)
\cos(u)\cos(v) = \tfrac{1}{2}[\cos(u - v) + \cos(u + v)]
Product-to-Sum (sin and cos)
\sin(u)\cos(v) = \tfrac{1}{2}[\sin(u + v) + \sin(u - v)]
Sum-to-Product (sin)
\sin(u) + \sin(v) = 2\sin\left(\frac{u + v}{2}\right)\cos\left(\frac{u - v}{2}\right)
Sum-to-Product (sin difference)
\sin(u) - \sin(v) = 2\cos\left(\frac{u + v}{2}\right)\sin\left(\frac{u - v}{2}\right)
Sum-to-Product (cos)
\cos(u) + \cos(v) = 2\cos\left(\frac{u + v}{2}\right)\cos\left(\frac{u - v}{2}\right)
Sum-to-Product (cos difference)
\cos(u) - \cos(v) = -2\sin\left(\frac{u + v}{2}\right)\sin\left(\frac{u - v}{2}\right)