1/26
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Derivative of a Constant
0
d/dx [ax] =
a
d/dx [√(x+-a)] =
1/2√(x+-a)
Power Rule: d/dx [xᵃ] =
a(xᵃ⁻¹)
d/dx [eˣ] =
eˣ
d/dx [eᵃˣ] =
a(eᵃˣ)
d/dx [ln(|x|)] =
1/x
d/dx [aˣ] =
aˣ[ln(a)]
d/dx [sin(x)] =
cos(x)
d/dx [cos(x)] =
-sin(x)
d/dx [tan(x)] =
sec²(x) or (sec x)²
d/dx [cot(x)] =
-csc²(x) or -(csc x)²
d/dx [sec(x)] =
sec(x)tan(x)
d/dx [csc(x)] =
-csc(x)cot(x) or -cot(x)csc(x)
d/dx [arcsin(x)] =
1/√(1-x²)
d/dx [arccos(x)] =
-1/√(1-x²)
d/dx [arctan(x)] =
1/(1+x²)
d/dx [arccot(x)] =
-1/(1+x²)
d/dx [arcsec(x)] =
1/x√(x²-1)
d/dx [arccsc(x)] =
-1/x√(x²-1)
d/dx [logₐ(x)] =
1/xln(a)
Sum-Difference Rule: d/dx [f(x) +- g(x)] =
f'(x) +- g'(x)
Constant Out Rule: d/dx [a • f(x)] =
a • f'(x)
Product Rule: d/dx [f(x)g(x)] =
f'(x)g(x) + f(x)g'(x)
Quotient Rule: d/dx [f(x)/g(x)] =
[f'(x)g(x)-f(x)g'(x)]/[g(x)]²
Chain Rule: df(u)/dx =
df/du • du/dx
dx =
(1/u')du or x'du