1/61
aime
Name | Mastery | Learn | Test | Matching | Spaced | Call with Kai |
|---|
No study sessions yet.
\sin\left(a+b\right)
\sin\left(a\right)\cos\left(b\right)+\cos\left(a\right)\sin\left(b\right)
\sin\left(a-b\right)
\sin\left(a\right)\cos\left(b\right)-\cos\left(a\right)\sin\left(b\right)
\cos(a+b)
\cos(a)\cos(b)-\sin(a)\sin(b)
\cos\left(a-b\right)
\cos(a)\cos(b)+\sin\left(a\right)\sin(b)
\tan\left(a+b\right)
\frac{\tan\left(a\right)+\tan\left(b\right)}{1-\tan\left(a\right)\tan\left(b\right)}
\tan\left(a-b\right)
\frac{\tan\left(a\right)-\tan\left(b\right)}{1+\tan\left(a\right)\tan\left(b\right)}
A\sin\left(x\right)+B\cos\left(x\right)
\sqrt{A^2+B^2}\left(\frac{A\sin x}{\sqrt{A^2+B^2}}+\frac{B\cos x}{\sqrt{A^2+B^2}}\right)
\sin\left(2a\right)
2\sin\left(a\right)\cos\left(a\right)
\cos\left(2a\right)
\cos^2\left(a\right)-\sin^2\left(a\right)=2\cos^2\left(a\right)-1=1-2\sin^2\left(a\right)
\tan\left(2a\right)
\frac{2\tan\left(a\right)}{1-\tan^2\left(a\right)}
1-\cos\left(a\right)
2\sin^2\left(\frac{a}{2}\right)
1+\cos\left(a\right)
2\cos^2\left(\frac{a}{2}\right)
\sin\left(a\right)
\frac{2\tan\left(\frac{a}{2}\right)}{1+\tan^2\left(\frac{a}{2}\right)}
\cos\left(a\right)
\frac{1-\tan^2\left(\frac{a}{2}\right)}{1+\tan^2\left(\frac{a}{2}\right)}
\tan\left(a\right)
\frac{2\tan\left(\frac{a}{2}\right)}{1-\tan^2\left(\frac{a}{2}\right)}
\sin\left(\frac{a}{2}\right)
\pm\sqrt{\frac{1-\cos\left(a\right)}{2}}
\cos\left(\frac{a}{2}\right)
\pm\sqrt{\frac{1+\cos\left(a\right)}{2}}
\tan\left(\frac{a}{2}\right)
\pm\sqrt{\frac{1-\cos\left(a\right)}{1+\cos\left(a\right)}}
\sin\left(3a\right)
3\sin a-4\sin^3a
\cos\left(3a\right)
4\cos^3a-3\cos a
\tan\left(3a\right)
\frac{3\tan a-\tan^3a}{1-3\tan^2a}
\sin\left(60^{}-a\right)\sin\left(a\right)\sin\left(60+a\right)
\frac14\sin\left(3a\right)
\cos\left(60-a\right)\cos\left(a\right)\cos\left(60+a\right)
\frac14\cos\left(3a\right)
\tan\left(60-a\right)\tan\left(a\right)\tan\left(60+a\right)
\tan\left(3a\right)
\sin\left(15\right)
\frac{\sqrt6-\sqrt2}{4}
\cos\left(15\right)
\frac{\sqrt6+\sqrt2}{4}
\sin\left(18\right)
\frac{\sqrt5-1}{4}
\cos\left(36\right)
\frac{\sqrt5+1}{4}
\tan x+\cot x
\frac{2}{\sin\left(2x\right)}
\tan x-\cot x
-2\cot\left(2x\right)
\sin u\cos v
\frac12\left\lbrack\sin\left(u+v\right)+\sin\left(u-v\right)\right\rbrack
\cos u\sin v
\frac12\left\lbrack\sin\left(u+v\right)-\sin\left(u-v\right)\right\rbrack
\cos u\cos v
\frac12\left\lbrack\cos\left(u+v\right)+\cos\left(u-v\right)\right\rbrack
\sin u\sin v
\frac12\left\lbrack\cos\left(u-v\right)-\cos\left(u+v\right)\right\rbrack
\sin x+\sin y
2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)
\sin x-\sin y
2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)
\cos x+\cos y
2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)
\cos x-\cos y
-2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)
\frac{1}{1+\cot\left(x\right)}+\frac{1}{1+\tan\left(x\right)}
1\left(0<x<90\right)
x+y=k\pi+\frac{\pi}{4}
\left(1+\tan x\right)\left(1+\tan y\right)=2
\sin\left(a+b\right)\sin\left(a-b\right)
\sin^2a-\sin^2b=\cos^2b-\cos^2a
\cos\left(a+b\right)\cos\left(a-b\right)
\cos^2a-\sin^2b=\cos^2b-\sin^2a
\tan\left(x+y+z\right)
\frac{\tan x+\tan y+\tan z-\tan x\tan y\tan z}{1-\tan x\tan y-\tan y\tan z-\tan x\tan z}
x+y+z=k\pi
\tan x+\tan y+\tan z=\tan x\tan y\tan z
\cos\left(a\right)\cos\left(2a\right)\cos\left(4a\right)\ldots\cos\left(2^{n}a\right)
\frac{\sin\left(2^{n+1}a\right)}{2^{n+1}\sin\left(a\right)}
\cos\left(a\right)+\cos\left(a+b\right)+\cos\left(a+2b\right)+\cdots+\cos\left(a+\left(n-1\right)b\right)
\frac{\sin\left(a+b\cdot\frac{2n-1}{2}\right)-\sin\left(a-\frac{b}{2}\right)}{2\sin\left(\frac{b}{2}\right)}=\frac{\cos\left(a+b\cdot\frac{n-1}{2}\right)\cdot\sin\left(\frac{n}{2}\cdot b\right)}{\sin\left(\frac{b}{2}\right)}
\sin\left(a\right)+\sin\left(a+b\right)+\sin\left(a+2b\right)+\cdots+\sin\left(a+\left(n-1\right)\cdot b\right)
\frac{\cos\left(a-\frac{b}{2}\right)-\cos\left(a+\frac{2n-1}{2}\cdot b\right)}{2\sin\left(\frac{b}{2}\right)}=\frac{\sin\left(a+\frac{n-1}{2}\cdot b\right)\cdot\sin\left(\frac{n}{2}\cdot b\right)}{\sin\left(\frac{b}{2}\right)}
x^2+y^2=r^2
x=r\cdot\cos\theta,y=r\cdot\sin\theta
\frac{x^2}{a^2}+\frac{y^2}{b^2}=1
x=a\cdot\cos\theta,y=b\cdot\sin\theta
\frac{x^2}{a^2}-\frac{y^2}{b^2}=1
x=a\cdot\sec\theta,y=b\cdot\tan\theta
\frac{1}{1+x^2}
x=\tan\theta\Rightarrow\frac{1}{1+x^2}=\cos^2\theta
\frac{x+y}{1-xy}
x=\tan a,y=\tan b\Rightarrow\frac{x+y}{1-xy}=\tan\left(a+b\right)
\frac{x-y}{1+xy}
x=\tan a,y=\tan b\Rightarrow\frac{x-y}{1+xy}=\tan\left(a-b\right)
\sqrt{a^2-x^2}
x=a\cdot\cos,\sqrt{a^2-x^2}=a\cdot\sin\theta
\sqrt{x^2-a^2}
x=a\cdot\sec\theta,\sqrt{x^2-a^2}=a\cdot\tan\theta
\sqrt{a^2+x^2}
x=a\cdot\tan\theta,\sqrt{a^2+x^2}=a\cdot\sec\theta
\frac{x}{\sqrt{1+x^2}}
x=\tan\theta\Rightarrow\frac{x}{\sqrt{1+x^2}}=\sin\theta
\frac{1}{\sqrt{1+x^2}}
x=\tan\theta\Rightarrow\frac{1}{\sqrt{1+x^2}}=\cos\theta
\frac{2x}{1+x^2}
x=\tan\frac{\theta}{2}\Rightarrow\frac{2x}{1+x^2}=\sin\theta
\frac{1-x^2}{1+x^2}
x=\tan\frac{\theta}{2}\Rightarrow\frac{1-x^2}{1+x^2}=\cos\theta
\frac{2x}{1-x^2}
x=\tan\frac{\theta}{2}\Rightarrow\frac{2x}{1-x^2}=\tan\theta
x^2+y^2+z^2=r^2
x=r\cos a\cos b,y=r\cos a\sin b,z=r\sin a