1/28
👍
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
\sec\left(x\right)=
\frac{1}{\cos\left(x\right)}
\operatorname{cosec}\left(x\right)=
\frac{1}{\sin\left(x\right)}
\cot\left(x)\right.=
\frac{1}{\tan\left(x\right)}
How many degrees in 2π ?
360
Multiply x^{\omicron} by ___ to get the angle in radians
Arc length (RADIANS ONLY)
θr
Sector area (RADIANS ONLY)
\frac12\theta r^{2}
How to work out segment area?
Sector area - Triangle area
\sin\left(\theta\right)\thickapprox
\theta
\cos\theta\thickapprox
1-\frac12\theta^{2}
\tan\theta\thickapprox
\theta
IDENTITY: \tan\theta=
\frac{\sin\theta}{\cos\theta}
IDENTITY using \sin\left(x\right), \cos\left(x\right) and 1
\sin^2\left(x\right)+\cos^2\left(x\right)=1

What graph is this?
y=\cot\left(x\right)

What graph is this?
y=\operatorname{cosec}\left(x\right)

What graph is this?
y=\sec\left(x\right)
IDENTITY (there’s 3): \cos\left(2\alpha\right)
1-2\sin^2\left(\alpha\right),2\cos^2\left(\alpha\right)-1,\cos^2\left(\alpha\right)-\sin^2\left(\alpha\right)
IDENTITY: \sin\left(2\alpha\right)
2\sin\left(\alpha\right)\cos\left(\alpha\right)
IDENTITY: \tan\left(2\alpha\right)
\frac{2\tan\left(\alpha\right)}{1-\tan^2\left(\alpha\right)}
\cos\left(\alpha+\beta\right)=
\cos\left(\alpha\right)\cos\left(\beta\right)-\sin\left(\alpha\right)\sin\left(\beta\right)
\sin\left(\alpha+\beta\right)=
\sin\left(\alpha\right)\cos\left(\beta\right)+\cos\left(\alpha\right)\sin\left(\beta\right)
\tan\left(\alpha+\beta\right)=
\frac{\tan\left(\alpha\right)+\tan\left(\beta\right)}{1-\tan\left(\alpha\right)\tan\left(\beta\right)}
\sin\left(\alpha-\beta\right)=
\sin\left(\alpha\right)\cos\left(\beta\right)-\cos\left(\alpha\right)\sin\left(\beta\right)
\cos\left(\alpha-\beta\right)=
\cos\left(\alpha\right)\cos\left(\beta\right)+\sin\left(\alpha\right)\sin\left(\beta\right)
\tan\left(\alpha-\beta\right)=
\frac{\tan\left(\alpha\right)-\tan\left(\beta\right)}{1+\tan\left(\alpha\right)\tan\left(\beta\right)}
a\sin\left(\theta\right)+b\sin\left(\theta\right)=
R\sin\left(\theta+\alpha\right)
a\sin\left(\theta\right)-b\sin\left(\theta\right)=
R\sin\left(\theta-\alpha\right)
S_{n}=
\frac{a\left(1-r^{n}\right)}{1-r}
S_{\infty}=
\frac{a}{1-r}