A2 Maths Formulae

5.0(1)
studied byStudied by 2 people
5.0(1)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/28

flashcard set

Earn XP

Description and Tags

👍

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

29 Terms

1
New cards

\sec\left(x\right)=

\frac{1}{\cos\left(x\right)}

2
New cards

\operatorname{cosec}\left(x\right)=

\frac{1}{\sin\left(x\right)}

3
New cards

\cot\left(x)\right.=  

\frac{1}{\tan\left(x\right)}

4
New cards

How many degrees in 2π ?

360

5
New cards

Multiply x^{\omicron} by ___ to get the angle in radians

6
New cards

Arc length (RADIANS ONLY)

θr

7
New cards

Sector area (RADIANS ONLY)

\frac12\theta r^{2}

8
New cards

How to work out segment area?

Sector area - Triangle area

9
New cards

\sin\left(\theta\right)\thickapprox

\theta

10
New cards

\cos\theta\thickapprox

1-\frac12\theta^{2}

11
New cards

\tan\theta\thickapprox

\theta

12
New cards

IDENTITY: \tan\theta=

\frac{\sin\theta}{\cos\theta}

13
New cards

IDENTITY using \sin\left(x\right), \cos\left(x\right) and 1

\sin^2\left(x\right)+\cos^2\left(x\right)=1

14
New cards
<p>What graph is this?</p>

What graph is this?

y=\cot\left(x\right)

15
New cards
<p>What graph is this?</p>

What graph is this?

y=\operatorname{cosec}\left(x\right)

16
New cards
<p>What graph is this?</p>

What graph is this?

y=\sec\left(x\right)

17
New cards

IDENTITY (there’s 3): \cos\left(2\alpha\right)

1-2\sin^2\left(\alpha\right),2\cos^2\left(\alpha\right)-1,\cos^2\left(\alpha\right)-\sin^2\left(\alpha\right)

18
New cards

IDENTITY: \sin\left(2\alpha\right)

2\sin\left(\alpha\right)\cos\left(\alpha\right)

19
New cards

IDENTITY: \tan\left(2\alpha\right)

\frac{2\tan\left(\alpha\right)}{1-\tan^2\left(\alpha\right)}

20
New cards

\cos\left(\alpha+\beta\right)=

\cos\left(\alpha\right)\cos\left(\beta\right)-\sin\left(\alpha\right)\sin\left(\beta\right)

21
New cards

\sin\left(\alpha+\beta\right)=

\sin\left(\alpha\right)\cos\left(\beta\right)+\cos\left(\alpha\right)\sin\left(\beta\right)

22
New cards

\tan\left(\alpha+\beta\right)=

\frac{\tan\left(\alpha\right)+\tan\left(\beta\right)}{1-\tan\left(\alpha\right)\tan\left(\beta\right)}

23
New cards

\sin\left(\alpha-\beta\right)=

\sin\left(\alpha\right)\cos\left(\beta\right)-\cos\left(\alpha\right)\sin\left(\beta\right)

24
New cards

\cos\left(\alpha-\beta\right)=

\cos\left(\alpha\right)\cos\left(\beta\right)+\sin\left(\alpha\right)\sin\left(\beta\right)

25
New cards

\tan\left(\alpha-\beta\right)=

\frac{\tan\left(\alpha\right)-\tan\left(\beta\right)}{1+\tan\left(\alpha\right)\tan\left(\beta\right)}

26
New cards

a\sin\left(\theta\right)+b\sin\left(\theta\right)=

R\sin\left(\theta+\alpha\right)

27
New cards

a\sin\left(\theta\right)-b\sin\left(\theta\right)=

R\sin\left(\theta-\alpha\right)

28
New cards

S_{n}=

\frac{a\left(1-r^{n}\right)}{1-r}

29
New cards

S_{\infty}=

\frac{a}{1-r}