blood pressure regulation

0.0(0)
studied byStudied by 0 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/53

flashcard set

Earn XP

Description and Tags

likely incomplete

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

54 Terms

1
New cards

parasympathetic innervation of the heart

  • SA node and AV node

  • Releases acetylcholine which binds to muscarinic receptors (M2)

  • Slows the heart rate and rhythm

mechanism:

  • inhibits cyclic AMP (cAMP) (by inhibiting adenylyl cyclase, the enzyme responsible for its production)

  • intracellular Ca2+ levels decreases (calcium channels close) (slows AV node conduction)

  • K+ conductance increased leading to hyperpolarisation of membrane (slows heart rate)

<ul><li><p>SA node and AV node</p></li><li><p>Releases acetylcholine which binds to muscarinic receptors (M2)</p></li><li><p>Slows the heart rate and rhythm</p></li></ul><p>mechanism:</p><ul><li><p>inhibits <strong>cyclic AMP (cAMP) </strong>(by inhibiting adenylyl cyclase, the enzyme responsible for its production)</p></li><li><p><span style="font-size: calc(var(--scale-factor)*18.00px)">intracellular Ca2+ levels decreases (calcium channels close) (slows AV node conduction)</span></p></li><li><p><span style="font-size: calc(var(--scale-factor)*18.00px)">K+ conductance increased leading to hyperpolarisation of membrane (slows heart rate)</span></p></li></ul><p></p><p></p>
2
New cards

sympathetic regulation of blood pressure

  • Responsible for immediately increasing blood pressure
    e.g. Exercise, standing, etc.

  • Releases noradrenaline →

  • Heart:

    • NA acts on β1-receptors in heart to increase heart rate and contractility

  • Blood vessels:

    • α1-receptors vasoconstriction (TPR) → increased cardiac output

    • parasympathetic: β2-receptors vasodilation (rarely)

  • Kidneys:

    • α1-receptors → renin/angiotensin/aldosterone
      secretion

<ul><li><p><span>Responsible for immediately increasing blood pressure<br>e.g. Exercise, standing, etc.</span></p></li><li><p><span>Releases noradrenaline →</span></p></li><li><p><span>Heart:</span></p><ul><li><p>NA acts on <span style="color: blue">β1</span>-receptors in heart to increase <strong>heart rate</strong> and <strong>contractility</strong></p></li></ul></li><li><p><span>Blood vessels:</span></p><ul><li><p><span style="color: blue">α1</span>-receptors <strong>vasoconstriction</strong> (TPR) → increased cardiac output</p></li><li><p>parasympathetic: β2-receptors vasodilation (rarely)</p></li></ul></li><li><p><span>Kidneys:</span></p><ul><li><p><span style="color: blue">α1</span>-receptors → renin/angiotensin/aldosterone<br>secretion</p></li></ul></li></ul><p></p>
3
New cards

blood volume

controlled by kidneys

high blood volume = high bp

4
New cards

hypotension risks

  • Circulatory collapse (vessels collapse)

  • Tissue ischemia/hypoxia

  • No filtration in the kidney

  • MAP below 60mmHg can cause syncope (fainting)

5
New cards

hypertension risks

  • Retinal, renal damage

  • Oedema

  • MAP above 160mmHg can result in cerebral oedema

  • Aneurysm/haemorrhage

  • Heart hypertrophy/failure

6
New cards

main factors influencing blood pressure

  • Blood volume (kidneys)

  • Total peripheral resistance (TPR) (SNS + blood vessels)

  • Cardiac output (SNS + blood vessels)

7
New cards

stroke volume

volume of blood ejected per beat (mL)

usually approx. 70mL/beat

EDV (end diastolic volume) - ESV (end systolic volume)

NA acts on β1-receptors in the heart to increase SV

<p>volume of blood ejected per beat (mL)</p><p>usually approx. 70mL/beat</p><p>EDV (end diastolic volume) - ESV (end systolic volume)</p><p>NA acts on β1-receptors in the heart to increase  SV</p>
8
New cards

heart rate

number of beats per minute

NA acts on β1-receptors in the heart to increase HR

9
New cards
10
New cards

cardiac output

heart rate X stroke volume

the volume of blood flowing through the circulation in one minute (L/min)

determined by blood vessels (due to venous return) and SNS

<p>heart rate X stroke volume</p><p>the volume of blood flowing through the circulation in one minute (L/min)</p><p>determined by <span>blood vessels (due to venous return) and SNS</span></p>
11
New cards

nerve regulation of heart rate

  • SA node innervated by the parasympathetic nervous system via the vagus nerve

    • cranial nerve

    • direct innervation

    • decrease HR

  • SA and AV nodes innervated by the sympathetic nervous system via the cardiac accelerator nerve

    • through spinal cord

    • Increase HR

<ul><li><p>SA node innervated by the parasympathetic nervous system via the <u>vagus nerve</u></p><ul><li><p>cranial nerve</p></li><li><p>direct innervation</p></li><li><p>decrease HR</p></li></ul></li><li><p>SA and AV nodes innervated by the sympathetic nervous system via the <u>cardiac accelerator nerve</u></p><ul><li><p>through spinal cord</p></li><li><p>Increase HR</p></li></ul></li></ul><p></p>
12
New cards

factors affecting stroke volume

  • preload

    • amount of ventricular stretch after diastole  (Frank-Starling mech)

  • contractility

    • controlled by SNS

  • afterload

    • amount of resistance heart must overcome to open aortic valve (inverse to stroke volume)

(not affected by heart rate)

<ul><li><p>preload</p><ul><li><p><span>amount of ventricular stretch after diastole&nbsp; </span><strong>(Frank-Starling mech)</strong></p></li></ul></li><li><p>contractility</p><ul><li><p><span>controlled by SNS</span></p></li></ul></li><li><p>afterload</p><ul><li><p><span>amount of resistance heart must overcome to open aortic valve (inverse to stroke volume)</span></p></li></ul></li></ul><p>(not affected by heart rate)</p>
13
New cards

preload

  • the amount of sarcomere stretch experienced by cardiomyocytes, at the end of ventricular filling during diastole

    • i.e. the stretch that the blood places on the walls of the ventricles when it’s maximally filled (EDV)

  • Frank-Starling law: the more you stretch the heart, the greater the reflexive contraction of the heart will be, and the more blood that will be ejected (until plateau)

  • directly related to venous return

<ul><li><p>the amount of sarcomere stretch experienced by cardiomyocytes, at the end of ventricular filling during diastole</p><ul><li><p>i.e. the stretch that the blood places on the walls of the ventricles when it’s <strong>maximally filled (EDV)</strong></p></li></ul></li><li><p><u>Frank-Starling law:</u> the more you stretch the heart, the greater the reflexive contraction of the heart will be, and the more blood that will be ejected (until plateau)</p></li><li><p>directly related to <u>venous return</u></p></li></ul><p></p>
14
New cards

contractility

the relative ability of the heart to eject a stroke volume (SV) at a given prevailing afterload and preload (end-diastolic volume)

impacted by sympathetic activation - contractile strength increasing

15
New cards

afterload

the resistance the blood experiences as it leaves the ventricle

increased afterload = decreased stroke volume

<p>the resistance the blood experiences as it leaves the ventricle</p><p>increased afterload = decreased stroke volume</p>
16
New cards

atherosclerosis effect on stroke volume

plaques in the walls of arteries

→ narrowed diameter of the arteries

→ increased afterload

→ decreased stroke volume

17
New cards

inotropic agents

influence contractile force

positive inotropic agents: factors increasing the availability of Ca2+

  • noradrenaline

  • thyroid hormone

negative inotropic agents: factors decreasing the availability of Ca2+

  • calcium blockers

  • electrolyte imbalances

<p>influence contractile force</p><p>positive inotropic agents: factors increasing the availability of Ca2+</p><ul><li><p>noradrenaline</p></li><li><p>thyroid hormone</p></li></ul><p>negative inotropic agents: factors decreasing the availability of Ca2+</p><ul><li><p>calcium blockers</p></li><li><p>electrolyte imbalances</p></li></ul><p></p>
18
New cards

chronotropic effects

  • influence heart rate

  • positive chronotropic effect:

    • sympathetic stimulation

    • anticholinergics (block acetylcholine)

  • negative chronotropic effect:

    • parasympathetic stimulation

    • beta-blockers

19
New cards

total peripheral resistance (TPR)

The sum of the resistance encountered throughout the circulation

For the blood to overcome the resistance and keep flowing forwards, a pressure gradient is required

Controlled by blood vessels and SNS 

<p>The sum of the resistance encountered throughout the circulation</p><p>For the blood to overcome the resistance and keep flowing forwards, a pressure gradient is required</p><p>Controlled by <span>blood vessels and SNS&nbsp;</span></p>
20
New cards

mean arterial pressure (MAP)

the average pressure exerted by the blood
against the vessels

MAP = diastolic pressure + 1/3 pulse pressure

determined by: cardiac output & total peripheral resistance

<p><span style="font-size: calc(var(--scale-factor)*30.00px)">the average pressure exerted by the blood</span><span><br></span><span style="font-size: calc(var(--scale-factor)*30.00px)">against the vessels</span></p><p><span style="font-size: calc(var(--scale-factor)*30.00px)">MAP = </span><span style="font-size: calc(var(--scale-factor)*19.99px)">diastolic pressure + 1/3 pulse pressure</span></p><p><span style="font-size: calc(var(--scale-factor)*30.00px)">determined by: cardiac output &amp; total peripheral resistance</span></p>
21
New cards

systolic blood pressure

pressure exerted against the walls of the arteries during systole

<p><span style="font-size: calc(var(--scale-factor)*19.99px)">pressure exerted against the walls of the arteries during systole</span></p>
22
New cards

diastolic blood pressure

pressure exerted against the walls of the arteries during diastole

<p><span style="font-size: calc(var(--scale-factor)*19.99px)">pressure exerted against the walls of the arteries during diastole</span></p>
23
New cards

elastic arteries purpose (maybe only Y1)

maintain constant pressure gradient despite pumping action

experience high pressure - Windkessel effect

  • distension accommodates increased volume with only moderate increase in pressure

  • recoil maintains relatively high pressure as blood flows away and volume is reduced

<p>maintain constant pressure gradient despite pumping action</p><p>experience high pressure - Windkessel effect</p><ul><li><p>distension accommodates increased volume with only moderate increase in pressure</p></li><li><p>recoil maintains relatively high pressure as blood flows away and volume is reduced</p></li></ul><p></p>
24
New cards

muscular arteries purpose (maybe only Y1)

  • distribute blood flow to muscles/organs

  • dampen pulsatility

  • (don’t have to withstand as much pressure as elastic arteries)

<ul><li><p>distribute blood flow to muscles/organs</p></li><li><p>dampen pulsatility</p></li><li><p>(don’t have to withstand as much pressure as elastic arteries)</p></li></ul><p></p>
25
New cards

arterioles

regulate blood flow to capillaries

  • innervated by sympathetic system (only)

    • a1 → vasoconstriction (SNS)

      • vasodilates in response to hormones, metabolic controls but NO ß2 for vasodilation (PNS)

  • short-term blood pressure regulation

    • regulate blood flow + TPR

  • ensure effective capillary exchange

(think kidneys afferent and efferent arterioles)

<p>regulate blood flow to capillaries</p><ul><li><p>innervated by sympathetic system (only) </p><ul><li><p>a1 → vasoconstriction (SNS)</p><ul><li><p>vasodilates in response to hormones, metabolic controls but <u>NO</u> ß2 for vasodilation (PNS)</p></li></ul></li></ul></li><li><p>short-term blood pressure regulation</p><ul><li><p>regulate blood flow + TPR</p></li></ul></li><li><p>ensure effective capillary exchange</p></li></ul><p>(think kidneys afferent and efferent arterioles)</p>
26
New cards

baroreceptors

  • detect blood pressure

  • high pressure baroreceptors:

    • located in arteries (carry blood away from the heart under high pressure):

      • aortic arch (CNX sensory fibres)

      • carotid sinus (CNIX sensory fibres)

  • high pressure baroreceptors send information → cardiovascular centre in the medulla

    → adjusts sympathetic and parasympathetic activity appropriately

  • low pressure baroreceptors:

    • located in veins and atria (blood returning to the heart at much lower pressure)

      • venous system

      • right atrium

    • → pituitary gland releases ADH when blood volume is low

<ul><li><p>detect blood pressure</p></li><li><p>high pressure baroreceptors:</p><ul><li><p>located in <strong>arteries</strong> (carry blood away from the heart under high pressure):</p><ul><li><p>aortic arch (CNX sensory fibres)</p></li><li><p>carotid sinus (CNIX sensory fibres)</p></li></ul></li></ul></li><li><p><u>high pressure baroreceptors</u> send information → <strong>cardiovascular</strong> centre in the <strong>medulla</strong></p><p>→ adjusts sympathetic and parasympathetic activity appropriately</p></li><li><p>low pressure baroreceptors:</p><ul><li><p>located in <strong>veins</strong> and atria (blood returning to the heart at much lower pressure)</p><ul><li><p>venous system</p></li><li><p>right atrium</p></li></ul></li><li><p>→ pituitary gland releases ADH when blood volume is low</p></li></ul></li></ul><p></p>
27
New cards

autonomic innervation of the circulatory system

SNS and PNS:

  • SA and AV nodes

SNS only:

  • ventricles

  • blood vessels

<p>SNS and PNS:</p><ul><li><p>SA and AV nodes</p></li></ul><p>SNS only:</p><ul><li><p>ventricles</p></li><li><p>blood vessels</p></li></ul><p></p>
28
New cards

baroreceptor reflex - low BP

Reduced MAP

→ decreased baroreceptor firing rate

→ medulla cardioacceleratory center

  • sympathetic impulses to heart increasing:

    • heart rate

    • contractility

  • resulting in increased cardiac output

+ vasomotor center activates

  • increased: total peripheral resistance (vasoconstriction)

<p>Reduced MAP</p><p>→ decreased baroreceptor firing rate</p><p>→ medulla cardioacceleratory center</p><ul><li><p>sympathetic impulses to heart increasing:</p><ul><li><p>heart rate</p></li><li><p>contractility</p></li></ul></li><li><p>resulting in increased cardiac output</p></li></ul><p>+ vasomotor center activates</p><ul><li><p>increased: total peripheral resistance (vasoconstriction)</p></li></ul><img src="https://knowt-user-attachments.s3.amazonaws.com/6688912d-ffc7-469c-82d0-d6744e6db8f8.png" data-width="100%" data-align="center"><p></p>
29
New cards

baroreceptor reflex - high BP

Increases in MAP

→ increased firing rate of baroreceptors

→ activate the medulla cardioinhibitory centre (parasympathetic),

  • decreasing

    • heart rate

    • cardiac contractility

  • therefore decreasing cardiac output

+ vasomotor centre inhibited

  • decrease total peripheral resistance (vasodilation)

<p>Increases in MAP</p><p>→ increased firing rate of baroreceptors</p><p>→ activate the <u>medulla cardioinhibitory centre</u> (parasympathetic),</p><ul><li><p>decreasing</p><ul><li><p><strong>heart rate</strong></p></li><li><p>cardiac <strong>contractility</strong></p></li></ul></li><li><p>therefore decreasing cardiac <strong>output</strong></p></li></ul><p>+ vasomotor centre inhibited</p><ul><li><p>decrease<strong> total peripheral resistance</strong> (<strong>vasodilation</strong>)</p></li></ul><img src="https://knowt-user-attachments.s3.amazonaws.com/c138bee8-d4bc-43e0-8cf1-d59614856bf5.png" data-width="100%" data-align="center"><p></p>
30
New cards

Forces pushing and pulling fluid into the capillary (maybe only Y1)

pushing: interstitial fluid hydrostatic pressure

pulling: capillary oncotic pressure

(nutrient exchange at capillaries)

<p>pushing: i<span style="font-size: calc(var(--scale-factor)*10.00px)">nterstitial fluid hydrostatic pressure</span></p><p><span style="font-size: calc(var(--scale-factor)*10.00px)">pulling: capillary oncotic pressure</span></p><p></p><p><span style="font-size: calc(var(--scale-factor)*10.00px)">(nutrient exchange at capillaries)</span></p>
31
New cards

nephron

  • structural and functional unit of the kidney

  • glomerulus: high pressure capillary bed, fluid and dissolved solutes diffuse from blood into glomerular/bowman’s capsule

  • produced filtrate passes through renal tubule (composition continues to be altered)

<ul><li><p>structural and functional unit of the kidney</p></li><li><p>glomerulus: high pressure capillary bed, fluid and dissolved solutes diffuse from blood into glomerular/bowman’s capsule</p></li><li><p>produced filtrate passes through renal tubule (composition continues to be altered)</p></li></ul><p></p>
32
New cards

renal tubule

  1. proximal convoluted tubule (PCT)

    • substantial water and solute reenters bloodstream (reabsorbs)

  2. loop of Henle (descending and ascending limb)

    • descending: only water permeable/reabsorbed (lots of aquaporins)

    • ascending: only solutes reabsorbed (little to no aquaporins)

  3. distal convoluted tubule (DCT)

    • hormonal control for what is being reabsorbed

  4. collecting duct

    • hormonal control for what is being reabsorbed

<ol><li><p>proximal convoluted tubule (PCT)</p><ul><li><p>substantial water and solute reenters bloodstream (reabsorbs)</p></li></ul></li><li><p>loop of Henle (descending and ascending limb)</p><ul><li><p>descending: only water permeable/reabsorbed (lots of aquaporins) </p></li><li><p>ascending: only solutes reabsorbed (little to no aquaporins)</p></li></ul></li><li><p>distal convoluted tubule (DCT)</p><ul><li><p>hormonal control for what is being reabsorbed</p></li></ul></li><li><p>collecting duct</p><ul><li><p>hormonal control for what is being reabsorbed</p></li></ul></li></ol><p></p>
33
New cards

cortical nephrons

  • most abundant

  • found in cortex (outside) of the kidney (except loop of henle that dips into medullary portion)

<ul><li><p>most abundant</p></li><li><p>found in cortex (outside) of the kidney (except loop of henle that dips into medullary portion)</p></li></ul><p></p>
34
New cards

juxtamedullary nephron

  • less common

  • glomerulus and Bowman’s capsule arise near cortex-medullary junction

  • loops of Henle deeply invade renal medulla

  • important in producing concentrated urine

<ul><li><p>less common</p></li><li><p>glomerulus and Bowman’s capsule arise near cortex-medullary junction</p></li><li><p>loops of Henle deeply invade renal medulla</p></li><li><p>important in producing concentrated urine</p></li></ul><p></p>
35
New cards

glomerulus

  • high pressure capillaries

  • site of filtration

    • fluids and solutes forced into glomerular capsule

  • fed by afferent arterioles

  • drained by efferent arterioles

<ul><li><p>high pressure capillaries</p></li><li><p>site of filtration</p><ul><li><p>fluids and solutes forced into glomerular capsule</p></li></ul></li><li><p>fed by afferent arterioles</p></li><li><p>drained by efferent arterioles</p></li></ul><p></p>
36
New cards

peritubular capillaries

  • arise from efferent arteriole

  • low pressure porous capillaries

    • filter waste from blood

    • reabsorb water and solutes from filtrate back into blood

    • vasa recta - long straight vessels serving juxtamedullary nephrons

<ul><li><p>arise from efferent arteriole</p></li><li><p>low pressure porous capillaries</p><ul><li><p>filter waste from blood</p></li><li><p>reabsorb water and solutes from filtrate back into blood</p></li><li><p><u>vasa recta</u> - long straight vessels serving juxtamedullary nephrons</p></li></ul></li></ul><p></p>
37
New cards

juxtaglomerular apparatus

region where distal portion of ascending limb lies against afferent arteriole

contains:

  • juxtaglomerular/granular cells

  • macula densa

<p>region where distal portion of ascending limb lies against afferent arteriole</p><p>contains:</p><ul><li><p>juxtaglomerular/granular cells</p></li><li><p>macula densa</p></li></ul><p></p>
38
New cards

juxtaglomerular/granular cells

  • enlarged smooth muscle cells

  • secretory granules producing and storing renin

  • mechanoreceptor that sense BP in afferent arteriole (low BP increases renin release)

    • controls arteriole diameter to regulate blood flow

  • NA

    → ß1 receptors

    renin secretion

39
New cards

macula densa cells

  • specialised epithelial cells

  • closely packed cells of ascending limb

  • chemoreceptors - monitor changes in NaCl in distal part of nephron

  • responsible for vasoconstricting afferent arteriole to regulate blood flow/filtrate into glomerulus

<ul><li><p>specialised epithelial cells</p></li><li><p>closely packed cells of ascending limb</p></li><li><p><strong>chemoreceptors</strong> - monitor changes in <strong>NaCl</strong> in distal part of nephron</p></li><li><p>responsible for vasoconstricting <strong>afferent arteriole</strong> to regulate blood flow/filtrate into glomerulus</p></li></ul><p></p>
40
New cards

glomerular filtration

BP forced fluids and solutes across glomerular capillaries into glomerular capsule

  • passive process

  • leaky glomerular capillaries made of fenestrated endothelial cells (open windows)

  • high pressure and large surface area increases filtration efficiency

  • small molecules move down pressure gradient across filtration membrane

<p>BP forced fluids and solutes across glomerular capillaries into glomerular capsule</p><ul><li><p>passive process</p></li><li><p>leaky glomerular capillaries made of fenestrated endothelial cells (open windows)</p></li><li><p>high pressure and large surface area increases filtration efficiency</p></li><li><p><span>small molecules move down pressure gradient across filtration membrane</span></p></li></ul><p></p>
41
New cards

glomerular blood pressure

filtration rate mainly dependent on BP

  • afferent arterioles: short, large diameter

  • efferent arterioles: smaller diameter

therefore high rate of blood flow into glomerulus, low rate out of glomerulus

<p>filtration rate mainly dependent on BP</p><ul><li><p>afferent arterioles: short, large diameter</p></li><li><p>efferent arterioles: smaller diameter</p></li></ul><p>therefore high rate of blood flow into glomerulus, low rate out of glomerulus</p>
42
New cards

glomerular filtration rate (GFR)

indicator of kidney function: volume of filtrate produced by all the glomeruli in both kidneys per minute

  • Intrinsic mechanisms (renal autoregulation) maintain stable filtration under normal conditions.

  • Extrinsic mechanisms prioritize systemic blood pressure and survival during emergencies, sometimes at the cost of kidney filtration

43
New cards

Intrinsic renal mechanisms

alter blood volume

  • increased blood pressure + renal blood flow increase water + sodium excretion (urine production)

  • two mechanisms:

    • pressure diuresis

      • high pressure

        → more filtrate formed

        → more urine formed 

    • pressure natriuresis

      • sodium excretion:

        • filtrate is formed faster and pushed through nephron faster

        • not much time for sodium reabsorption

        • electrolytes remain in filtrate and water follows and remains so more urine formed

44
New cards

hormones regulating the reabsorption in distal convoluted tubule and collecting duct

  • Aldosterone

  • ADH

  • ANP

  • Parathyroid hormone (PTH)

<ul><li><p><span>Aldosterone</span></p></li><li><p><span>ADH</span></p></li><li><p><span>ANP</span></p></li><li><p><span>Parathyroid hormone (PTH)</span></p></li></ul><p></p>
45
New cards

anti-diuretic hormone

  • Hypothalamic neurons called osmoreceptors monitor solute concentrations in the blood

  • If blood becomes too concentrated OR if BP is low:

    • ADH released by posterior pituitary

    • Targets collecting ducts (via cAMP system)

    • Water reabsorbed from filtrate

<ul><li><p>Hypothalamic neurons called osmoreceptors monitor solute concentrations in the blood</p></li><li><p>If blood becomes too concentrated OR if <strong>BP is low</strong>:</p><ul><li><p>ADH released by posterior pituitary</p></li><li><p>Targets <strong>collecting ducts</strong> (via cAMP system)</p></li><li><p>Water reabsorbed from filtrate</p></li></ul></li></ul><p></p>
46
New cards

ACE

  • Angiotensin Converting Enzyme (RAAS system)

    • Angiotensin I → Angiotensin II

    • ALSO: Bradykinin → inactive metabolites

      • ACE inhibitors lead to the accumulation of bradykinin in lungs → cough

  • found in endothelial cells of all tissues

  • AI → AII primarily converted in the lungs (due to their dense vasculature and high ACE expression)

47
New cards

RAAS system

48
New cards

aldosterone

  • regulates amount of Na+ reabsorption (Na+ decrease = aldosterone release)

  • Zona Glomerulosa in adrenal cortex releases aldosterone in response to

    • Decreased blood volume or BP

    • renin-angiotensin system

    • Angiotensin II

    • Increased Potassium

    • Adrenocorticotropic hormone

    • Atrial natriuretic peptide

  • action: DCT (distal convoluted tubule) and collecting duct

    • Increases blood volume

      • Na+ reabsorption

      • Water reabsorption

      • K+ & H+ excretion

<ul><li><p>regulates amount of Na+ reabsorption (Na+ decrease = aldosterone release)</p></li><li><p><strong>Zona Glomerulosa </strong>in <strong>adrenal cortex</strong> releases aldosterone in response to</p><ul><li><p>Decreased blood volume or BP</p></li><li><p>renin-angiotensin system</p></li></ul><p></p><ul><li><p><span>Angiotensin II</span></p></li><li><p><span>Increased Potassium</span></p></li><li><p><span>Adrenocorticotropic hormone</span></p></li><li><p><span>Atrial natriuretic peptide</span></p></li></ul></li><li><p>action: DCT (<strong>distal convoluted tubule</strong>) and <strong>collecting duct</strong></p><ul><li><p>Increases blood volume</p><ul><li><p><span>Na+ reabsorption</span></p></li><li><p><span>Water reabsorption</span></p></li><li><p><span>K+ &amp; H+ excretion</span></p></li></ul></li></ul></li></ul><img src="https://knowt-user-attachments.s3.amazonaws.com/b67416d5-e1c9-4f1c-8c6a-0b60b33dd086.png" data-width="100%" data-align="center"><p></p>
49
New cards

atrial natriuretic peptide

  • secreted by specialized cardiac muscle cells in the atria

    • triggered by increased BP

  • Inhibits the renin-angiotensin system and release of aldosterone

  • Inhibits Na+ and water reabsorption

  • ↓ blood volume and BP

<ul><li><p>secreted by specialized cardiac muscle cells in the <strong>atria</strong></p><ul><li><p>triggered by <strong>increased BP</strong></p></li></ul></li><li><p>Inhibits the renin-angiotensin system and release of aldosterone</p></li><li><p>Inhibits Na<sup>+</sup> and water reabsorption</p></li><li><p>↓ blood volume and BP</p></li></ul><p></p>
50
New cards

Antidiuretic hormone (ADH)/vasopressin

  • secreted by posterior pituitary after

    • increased osmolality of bodily fluids

    • decreased volume and pressure of vascular system

  • increases permeability of collecting ducts to:

    • water (primary action) (via aquaporins)

    • urea (accumulates with NaCl - adding to osmotic gradient)

  • stimulates reabsorption of NaCl by thick ascending limb of Loop of Henle, DT and collecting duct

Synthesised in the hypothalamus
- paraventricular nucleus
- supraoptic nucleus
➢ Released from the posterior pituitary
➢ Acts on
➢ V2 receptors in the kidney induce water retention
➢ V1 receptors on blood vessels cause vasoconstriction
➢ Antidiuretic effect
Increases water permeability in distal convoluted
tubule and collecting ducts (by increasing number of
water channels (aquaporins)

51
New cards

how is ADH triggered to release

  • 1% rise in osmolality can significantly increase ADH secretion

    • detected by osmoreceptors in hypothalamus

  • 10% drop in blood volume stimulates low pressure baroreceptors (atria and veins) to send signals to release ADH

  • signal sent to synthesising cells located in hypothalamus:

    • supraoptic nuclei

    • paraventricular nuclei

  • released from posterior pituitary

<ul><li><p>1% rise in <span style="color: blue">osmolality</span> can significantly increase ADH secretion</p><ul><li><p>detected by <strong>osmoreceptors</strong> in hypothalamus</p></li></ul></li><li><p>10% drop in <span style="color: blue">blood volume</span> stimulates <strong>low pressure baroreceptors</strong> (atria and veins) to send signals to release ADH</p></li><li><p>signal sent to synthesising cells located in hypothalamus:</p><ul><li><p><strong>supraoptic nuclei</strong></p></li><li><p><strong>paraventricular nuclei</strong></p></li></ul></li><li><p>released from <strong>posterior pituitary</strong></p></li></ul><img src="https://knowt-user-attachments.s3.amazonaws.com/567edca3-f9ea-49bb-aa96-b2a13694dc15.png" data-width="100%" data-align="center"><p></p>
52
New cards

actions of ADH

  • V1 receptors on blood vessels cause vasoconstriction

  • V2 receptors in the kidney induce water retention

    • Increases water permeability in distal convoluted
      tubule and collecting ducts (by increasing number of water channels (aquaporins)

<ul><li><p>V1 receptors on blood vessels cause vasoconstriction</p></li><li><p><span>V2 receptors in the kidney induce water retention</span></p><ul><li><p><span>Increases water permeability in distal convoluted<br>tubule and collecting ducts (by increasing number of water channels (aquaporins)</span></p></li></ul></li></ul><img src="https://knowt-user-attachments.s3.amazonaws.com/450b8dac-b070-4479-99e6-0c6f8f2f9085.png" data-width="100%" data-align="center"><p></p>
53
New cards

ATP binds to

P2X receptors (pyronergic)

54
New cards

Adenosine binds to

A1 receptors