Genetic diversity

0.0(0)
studied byStudied by 0 people
0.0(0)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/7

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

8 Terms

1
New cards
term image
knowt flashcard image
2
New cards
term image
knowt flashcard image
3
New cards
term image
knowt flashcard image
4
New cards

Continuation form question before

knowt flashcard image
5
New cards
<p>Meosis</p>

Meosis

Perfect — let’s go through meiosis step-by-step the way AQA A-level Biology expects you to understand it, clearly and simply so it sticks.


🔹 Overview

Purpose of meiosis:
To produce gametes (sex cells) with half the chromosome number (haploid, n) from a diploid (2n) parent cell.
So humans: 46 → 23 chromosomes.

Two divisions:

  1. Meiosis I – reduction division (diploid → haploid)

  2. Meiosis II – like mitosis (sister chromatids separate)


🧬 Meiosis I — Reduction Division 1⃣ Prophase I

Most important stage!

  • Chromosomes condense and become visible.

  • Homologous chromosomes (same genes, different alleles) pair upbivalent formation.

  • Crossing over occurs:

    • Non-sister chromatids exchange alleles.

    • Produces new combinations of alleles → genetic variation.

  • Nuclear envelope breaks down and spindle fibres form.

Key AQA word: “Crossing over between homologous chromosomes leads to genetic recombination.”


2⃣ Metaphase I

  • Homologous pairs line up side by side along the equator of the cell.

  • Independent assortment: orientation of each pair is random.

    • This means maternal and paternal chromosomes can go to either pole → variation.

Key idea: “Random assortment of homologous chromosomes” = independent segregation.


3⃣ Anaphase I

  • Homologous chromosomes are pulled to opposite poles by spindle fibres.

  • Centromeres don’t split (sister chromatids stay together).

Chromosome number halves — reduction division happens here.


4⃣ Telophase I

  • Nuclear envelope reforms around each set of chromosomes.

  • Cytokinesis (cell divides) → two haploid cells (but each chromosome still has two chromatids).


🧬 Meiosis II — Like Mitosis

No DNA replication before this division.

5⃣ Prophase II

  • New spindle apparatus forms in each haploid cell.

  • Chromosomes condense again (if they had decondensed).


6⃣ Metaphase II

  • Individual chromosomes line up along the equator.

  • Each chromosome’s sister chromatids attach to spindle fibres from opposite poles.


7⃣ Anaphase II

  • Centromeres divide, and sister chromatids separate.

  • Chromatids are pulled to opposite poles.


8⃣ Telophase II

  • Nuclear envelopes reform, and cytokinesis occurs.

  • Results in four genetically different haploid cells.


🌟 Summary Table

Stage

Key events

Chromosome state

Prophase I

Crossing over, bivalents form

2n

Metaphase I

Homologous pairs line up randomly

2n

Anaphase I

Homologous chromosomes separate

n

Telophase I

Two haploid cells form

n

Prophase II

Spindle reforms

n

Metaphase II

Chromosomes align singly

n

Anaphase II

Chromatids separate

n

Telophase II

Four haploid gametes

n


🧠 AQA Exam Tips

  • Always say “alleles” when describing variation (not “genes”).

  • Write “crossing over → recombination of alleles”.

  • Write “independent segregation → different combinations of maternal and paternal chromosomes.”

  • Remember: meiosis → haploid and genetically different cells.


Would you like me to give you a simple labelled diagram of the stages to visualise it (AQA-style, simplified for revision)?

<p>Perfect — let’s go through <strong>meiosis</strong> step-by-step the way <strong>AQA A-level Biology</strong> expects you to understand it, clearly and simply so it <em>sticks</em>.</p><div data-type="horizontalRule"><hr></div><p> <span data-name="small_blue_diamond" data-type="emoji">🔹</span> Overview </p><p><strong>Purpose of meiosis:</strong><br>To produce <strong>gametes (sex cells)</strong> with <strong>half the chromosome number (haploid, n)</strong> from a <strong>diploid (2n)</strong> parent cell.<br>So humans: 46 → 23 chromosomes.</p><p><strong>Two divisions:</strong></p><ol><li><p><strong>Meiosis I – reduction division</strong> (diploid → haploid)</p></li><li><p><strong>Meiosis II – like mitosis</strong> (sister chromatids separate)</p></li></ol><div data-type="horizontalRule"><hr></div><p> <span data-name="dna" data-type="emoji">🧬</span> Meiosis I — Reduction Division <span data-name="one" data-type="emoji">1⃣</span><strong> Prophase I</strong></p><p><strong>Most important stage!</strong></p><ul><li><p><strong>Chromosomes condense</strong> and become visible.</p></li><li><p><strong>Homologous chromosomes</strong> (same genes, different alleles) <strong>pair up</strong> → <strong>bivalent</strong> formation.</p></li><li><p><strong>Crossing over</strong> occurs:</p><ul><li><p>Non-sister chromatids exchange alleles.</p></li><li><p>Produces new combinations of alleles → <strong>genetic variation</strong>.</p></li></ul></li><li><p><strong>Nuclear envelope breaks down</strong> and <strong>spindle fibres</strong> form.</p></li></ul><p><span data-name="check_mark_button" data-type="emoji">✅</span> <em>Key AQA word:</em> “Crossing over between homologous chromosomes leads to genetic recombination.”</p><div data-type="horizontalRule"><hr></div><p><span data-name="two" data-type="emoji">2⃣</span><strong> Metaphase I</strong></p><ul><li><p><strong>Homologous pairs line up</strong> side by side <strong>along the equator</strong> of the cell.</p></li><li><p><strong>Independent assortment:</strong> orientation of each pair is <strong>random</strong>.</p><ul><li><p>This means maternal and paternal chromosomes can go to either pole → <strong>variation</strong>.</p></li></ul></li></ul><p><span data-name="check_mark_button" data-type="emoji">✅</span> <em>Key idea:</em> “Random assortment of homologous chromosomes” = <strong>independent segregation</strong>.</p><div data-type="horizontalRule"><hr></div><p><span data-name="three" data-type="emoji">3⃣</span><strong> Anaphase I</strong></p><ul><li><p><strong>Homologous chromosomes are pulled to opposite poles</strong> by spindle fibres.</p></li><li><p><strong>Centromeres don’t split</strong> (sister chromatids stay together).</p></li></ul><p><span data-name="check_mark_button" data-type="emoji">✅</span> <em>Chromosome number halves</em> — reduction division happens here.</p><div data-type="horizontalRule"><hr></div><p><span data-name="four" data-type="emoji">4⃣</span><strong> Telophase I</strong></p><ul><li><p><strong>Nuclear envelope reforms</strong> around each set of chromosomes.</p></li><li><p><strong>Cytokinesis</strong> (cell divides) → two <strong>haploid</strong> cells (but each chromosome still has two chromatids).</p></li></ul><div data-type="horizontalRule"><hr></div><p> <span data-name="dna" data-type="emoji">🧬</span> Meiosis II — Like Mitosis </p><p>No DNA replication before this division.</p><p><span data-name="five" data-type="emoji">5⃣</span><strong> Prophase II</strong></p><ul><li><p>New <strong>spindle apparatus forms</strong> in each haploid cell.</p></li><li><p>Chromosomes condense again (if they had decondensed).</p></li></ul><div data-type="horizontalRule"><hr></div><p><span data-name="six" data-type="emoji">6⃣</span><strong> Metaphase II</strong></p><ul><li><p><strong>Individual chromosomes line up</strong> along the equator.</p></li><li><p>Each chromosome’s <strong>sister chromatids</strong> attach to spindle fibres from opposite poles.</p></li></ul><div data-type="horizontalRule"><hr></div><p><span data-name="seven" data-type="emoji">7⃣</span><strong> Anaphase II</strong></p><ul><li><p><strong>Centromeres divide</strong>, and <strong>sister chromatids separate</strong>.</p></li><li><p>Chromatids are pulled to opposite poles.</p></li></ul><div data-type="horizontalRule"><hr></div><p><span data-name="eight" data-type="emoji">8⃣</span><strong> Telophase II</strong></p><ul><li><p><strong>Nuclear envelopes reform</strong>, and <strong>cytokinesis</strong> occurs.</p></li><li><p>Results in <strong>four genetically different haploid cells</strong>.</p></li></ul><div data-type="horizontalRule"><hr></div><p> <span data-name="glowing_star" data-type="emoji">🌟</span> Summary Table </p><table style="min-width: 75px;"><colgroup><col style="min-width: 25px;"><col style="min-width: 25px;"><col style="min-width: 25px;"></colgroup><tbody><tr><th colspan="1" rowspan="1"><p>Stage</p></th><th colspan="1" rowspan="1"><p>Key events</p></th><th colspan="1" rowspan="1"><p>Chromosome state</p></th></tr><tr><td colspan="1" rowspan="1"><p><strong>Prophase I</strong></p></td><td colspan="1" rowspan="1"><p>Crossing over, bivalents form</p></td><td colspan="1" rowspan="1"><p>2n</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>Metaphase I</strong></p></td><td colspan="1" rowspan="1"><p>Homologous pairs line up randomly</p></td><td colspan="1" rowspan="1"><p>2n</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>Anaphase I</strong></p></td><td colspan="1" rowspan="1"><p>Homologous chromosomes separate</p></td><td colspan="1" rowspan="1"><p>n</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>Telophase I</strong></p></td><td colspan="1" rowspan="1"><p>Two haploid cells form</p></td><td colspan="1" rowspan="1"><p>n</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>Prophase II</strong></p></td><td colspan="1" rowspan="1"><p>Spindle reforms</p></td><td colspan="1" rowspan="1"><p>n</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>Metaphase II</strong></p></td><td colspan="1" rowspan="1"><p>Chromosomes align singly</p></td><td colspan="1" rowspan="1"><p>n</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>Anaphase II</strong></p></td><td colspan="1" rowspan="1"><p>Chromatids separate</p></td><td colspan="1" rowspan="1"><p>n</p></td></tr><tr><td colspan="1" rowspan="1"><p><strong>Telophase II</strong></p></td><td colspan="1" rowspan="1"><p>Four haploid gametes</p></td><td colspan="1" rowspan="1"><p>n</p></td></tr></tbody></table><div data-type="horizontalRule"><hr></div><p> <span data-name="brain" data-type="emoji">🧠</span> AQA Exam Tips </p><ul><li><p>Always say <strong>“alleles”</strong> when describing variation (not “genes”).</p></li><li><p>Write <strong>“crossing over → recombination of alleles”</strong>.</p></li><li><p>Write <strong>“independent segregation → different combinations of maternal and paternal chromosomes.”</strong></p></li><li><p>Remember: meiosis → <strong>haploid</strong> and <strong>genetically different</strong> cells.</p></li></ul><div data-type="horizontalRule"><hr></div><p>Would you like me to give you a <strong>simple labelled diagram</strong> of the stages to visualise it (AQA-style, simplified for revision)?</p>
6
New cards
term image
knowt flashcard image
7
New cards
term image
knowt flashcard image
8
New cards
term image
knowt flashcard image