8. Electrical properties of excitable cells: Capacitance & Conductance Part 2: Conductance

0.0(0)
studied byStudied by 0 people
full-widthCall with Kai
GameKnowt Play
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/13

flashcard set

Earn XP

Description and Tags

Lecture 8

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

14 Terms

1
New cards

Why is the cell membrane called a leaky capacitor?

  • Membrane = capacitor (stores charge)

  • Ion channels allow current through membrane → “leak”

  • Current measured in picoamperes (pA) = 1 picocoulomb per second

<ul><li><p>Membrane = capacitor (stores charge)</p></li><li><p>Ion channels allow <strong>current</strong> through membrane → “leak”</p></li><li><p>Current measured in <strong>picoamperes (pA)</strong> = 1 picocoulomb per second</p></li></ul><p></p>
2
New cards

How do ion channels affect membrane conductance?

  • Channels allow specific ions to pass → act as conductors

  • Ion channels have resistance (more than ECF/ICF) → can act as resistors

    • For neuron activity, important to consider resistance of intracellular environment

  • Ionic conductance depends on number of open channels

  • Together with capacitance → determines electrical activity

<ul><li><p>Channels allow <strong>specific ions</strong> to pass → act as <strong>conductors</strong></p></li><li><p>Ion channels have <strong>resistance</strong> (more than ECF/ICF) → can act as resistors</p><ul><li><p>For neuron activity, important to consider resistance of <strong>intracellular environment</strong></p></li></ul></li><li><p><strong>Ionic conductance</strong> depends on number of <strong>open channels</strong></p></li><li><p>Together with capacitance → determines electrical activity</p></li></ul><p></p>
3
New cards

How is current through a single K+ channel determined?

  • Lipid bilayer separates charge → capacitance (Cm)

  • Current depends on electrical potential difference across membrane (Vm − Eion)

  • Conductance: ability of channel to pass current

    • γion (single channel), gion (all channels of that type)

    • Measured in siemens (S); inversely proportional to resistance (R), measured in Ohms

  • γion = 1 / R

  • Closed channel conductance = 0

    • When resistance = conductance

<ul><li><p>Lipid bilayer separates charge → capacitance (Cm)</p></li><li><p>Current depends on <strong>electrical potential difference across membrane </strong>(V<sub>m</sub> − E<sub>ion</sub>)</p></li><li><p><strong>Conductance</strong>: ability of channel to pass current</p><ul><li><p>γion (single channel), gion (all channels of that type)</p></li><li><p>Measured in <strong>siemens (S)</strong>; inversely proportional to <strong>resistance (R)</strong>, measured in Ohms</p></li></ul></li></ul><ul><li><p>γ<sub>ion</sub> = 1 / R</p></li></ul><ul><li><p><strong>Closed channel conductance = 0 </strong></p><ul><li><p>When resistance <span>↑ </span>= conductance <span>↓</span></p></li></ul></li></ul><p></p>
4
New cards

How does Ohm’s Law apply to ion channels in cells?

  • Ohm’s Law: I = V / R

  • In circuits: voltage source → resistor → current of electrons.

  • In cells: current = flow of ions, not electrons.

  • Conductance (gion) = 1 / R

  • Rewritten for ions:

    • I = gion ×V

  • Note: For ion channels, “V” isn’t just the battery voltage — it’s the driving force (membrane potential relative to the ion’s equilibrium potential).

<ul><li><p>Ohm’s Law: I = V / R</p></li><li><p>In circuits: voltage source → resistor → current of electrons.</p></li><li><p>In cells: current = flow of <strong>ions</strong>, not electrons.</p></li><li><p>Conductance (g<sub>ion</sub>) = 1 / R</p></li><li><p>Rewritten for ions:</p><ul><li><p>I = g<sub>ion </sub>×V</p></li></ul></li></ul><ul><li><p><span data-name="warning" data-type="emoji">⚠</span> Note: For ion channels, “V” isn’t just the battery voltage — it’s the <strong>driving force</strong> (membrane potential relative to the ion’s equilibrium potential).</p></li></ul><p></p>
5
New cards

Why is Ohm’s Law modified for ion channels?

  • Current: Iion = gion × (Vm − Eion) → includes driving force

    • Depends on conductance (g) and driving force (Vm − Eion)

  • If Vm = Eion → no net movement (iion = 0)

  • Resting Vm≠ Eion → driving force influences conductance of channel

  • Ions flow to move Vm toward their Eion

  • Example: Vm = −68 mV → K+ efflux occurs when channels open because Ek=-81 mV

<ul><li><p>Current: I<sub>ion </sub>= g<sub>ion</sub> × (V<sub>m</sub> − E<sub>ion</sub>) → includes <strong>driving force</strong></p><ul><li><p>Depends on conductance (g) and driving force (V<sub>m</sub> − E<sub>ion</sub>)</p></li></ul></li><li><p>If V<sub>m</sub> = E<sub>ion</sub> → no net movement (i<sub>ion</sub> = 0)</p></li><li><p>Resting V<sub>m</sub>≠ E<sub>ion</sub> → driving force influences conductance of channel</p></li><li><p>Ions flow to move V<sub>m</sub> <strong>toward their </strong>E<sub>ion</sub></p></li><li><p>Example: V<sub>m</sub> = −68 mV → K+ efflux occurs when channels open because E<sub>k</sub>=-81 mV</p></li></ul><p></p>
6
New cards

How do we calculate ion-specific currents?

  • Ik = gk(Vm − Ek)

  • INa = gNa(Vm − ENa)

  • ICl = gCl(Vm − ECl)

  • Each ion has its own conductance and driving force

7
New cards

How do we determine driving force and direction of ion movement in non-excitable cell?

  • Driving force = Vm − Eion

  • Example cell: Vm = −75 mV

    • Na+: −75 − 65 = −140 mV → Na+ moves in

    • K+: −75 − (−109) = 34 mV → K+ moves out

  • Larger absolute value → greater driving force

<ul><li><p>Driving force = Vm − Eion</p></li><li><p>Example cell: Vm = −75 mV</p><ul><li><p><mark data-color="#895f9e" style="background-color: rgb(137, 95, 158); color: inherit;">Na+: −75 − 65 = </mark><strong><mark data-color="#895f9e" style="background-color: rgb(137, 95, 158); color: inherit;">−140 mV</mark></strong><mark data-color="#895f9e" style="background-color: rgb(137, 95, 158); color: inherit;"> → Na+ moves </mark><strong><mark data-color="#895f9e" style="background-color: rgb(137, 95, 158); color: inherit;">in</mark></strong></p></li><li><p>K+: −75 − (−109) = <strong>34 mV</strong> → K+ moves <strong>out</strong></p></li></ul></li><li><p>Larger absolute value → greater driving force</p></li></ul><p></p>
8
New cards

What happens to passive and active currents at steady-state (excitable cell)?

  • Circuit includes conductance through passive Na+, K+, Cl− pathways and active transport (sodium-potassium pump)

  • At steady-state: sum of all active & passive ionic currents = 0

  • Passive and active currents balance each other

<ul><li><p>Circuit includes conductance through&nbsp;<strong>passive Na+, K+, Cl− pathways</strong>&nbsp;and&nbsp;<strong>active transport </strong>(sodium-potassium pump)</p></li><li><p>At steady-state: sum of all active &amp; passive ionic currents = 0</p></li><li><p>Passive and active currents <strong>balance each other</strong></p></li></ul><p></p>
9
New cards

How does a negative driving force affect ion movement in excitable cell?

  • Vm − Eion < 0 → positive ion moves into cell

  • Example: Vm = −68 mV, ENa = 58 mV

    • Vm − Eion = (-68) - (58)

    • Driving force = −126 mV → Na+ moves in to depolarize cell

<ul><li><p>Vm − Eion &lt; 0 → positive ion moves <strong>into cell</strong></p></li><li><p>Example: Vm = −68 mV, ENa = 58 mV</p><ul><li><p>Vm − Eion = (-68) - (58) </p></li><li><p>Driving force = −126 mV → Na+ moves <strong>in</strong> to depolarize cell</p></li></ul></li></ul><p></p>
10
New cards

How does a positive driving force affect ion movement?

  • Vm − Eion > 0 → positive ion moves out of cell

  • Example: Vm = −68 mV, EK = −81 mV

    • Vm − Eion = (-68) - (-81)

    • Driving force = +13 mV → K+ moves out to hyperpolarize cell

<ul><li><p>Vm − Eion &gt; 0 → positive ion moves <strong>out of cell</strong></p></li><li><p>Example: Vm = −68 mV, EK = −81 mV</p><ul><li><p>Vm − Eion = (-68) - (-81)</p></li><li><p>Driving force = +13 mV → K+ moves <strong>out</strong> to hyperpolarize cell</p></li></ul></li></ul><p></p>
11
New cards

How can we determine which ions flow through an ion channel?

  • Use patch clamp technique

    • Ex: Cell attached patch clamp

  • Experimentally induce depolarizing voltage step and measure current through single channel → determine ion specificity

<ul><li><p>Use <strong>patch clamp technique</strong></p><ul><li><p>Ex: Cell attached patch clamp</p></li></ul></li><li><p>Experimentally induce depolarizing voltage step and measure current through single channel → determine ion specificity</p></li></ul><p></p>
12
New cards

What does an I-V (current-voltage) plot tell us about an ion channel?

  • I-V plot shows how current through a channel changes with membrane voltage.

  • Linear relationship: Channel behaves like an Ohmic conductor → current is proportional to voltage.

  • Slope of I-V plot: Gives channel conductance (how easily ions pass).

  • No current at specific voltage (e.g., 58 mV): Membrane voltage equals the ion’s equilibrium potential (ENa).

    • At this voltage, driving force = 0, so no net ion flow.

  • Insight: Identifies which ion the channel is permeable to (here, Na⁺).

<ul><li><p>I-V plot shows how current through a channel changes with membrane voltage.</p></li><li><p><strong>Linear relationship:</strong> Channel behaves like an <strong>Ohmic conductor</strong> → current is proportional to voltage.</p></li><li><p><strong>Slope of I-V plot:</strong> Gives <strong>channel conductance</strong> (how easily ions pass).</p></li><li><p><strong>No current at specific voltage (e.g., 58 mV):</strong> Membrane voltage equals the <strong>ion’s equilibrium potential (ENa)</strong>.</p><ul><li><p>At this voltage, <strong>driving force = 0</strong>, so <strong>no net ion flow</strong>.</p></li></ul></li><li><p><strong>Insight:</strong> Identifies which ion the channel is permeable to (here, Na⁺).</p></li></ul><p></p>
13
New cards

What does a single-channel I-V plot tell us about ion flow and membrane potential?

  • The reversal potential (Eion or ER) is the voltage where no net current flows through the channel.

  • Activating a channel that is selective for a specific ion moves the membrane potential (Vm) toward Eion.

  • As Vm approaches Eion, the driving force decreases → less current.

  • If Vm = Eion → no current

  • If Vm is on the other side of Eion → current reverses direction.

  • I-V plots can be:

    • Linear (Ohmic) → channel passes current equally in both directions

    • Rectifying → channel passes current more easily in one direction than other

14
New cards

How do electrical signals arise when ion channels open?

  • Membrane potential changes during action potential

  • Caused by transient changes in ion conductances:

    • Rapid, brief Na+ influx

    • Slow, prolonged K+ efflux

<ul><li><p>Membrane potential changes during <strong>action potential</strong></p></li><li><p>Caused by <strong>transient changes in ion conductances</strong>:</p><ul><li><p>Rapid, brief <strong>Na+ influx</strong></p></li><li><p>Slow, prolonged <strong>K+ efflux</strong></p></li></ul></li></ul><p></p>