1/92
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
𝝆
m/V
vavg
(Δx)/(Δt)
speedavg
(Δxtotal)/(Δt)
slope
x/y
v
(dx)/(dt)
aavg
(ᐃv)/(ᐃt)
a
(dv)/(dt)
a
(d2x)/(dt2)
a
-g
a→ x b→
(aybz - byaz)i + (azbx - bzax)j
a→ x b→
(axby - bxay)k
r→
xî+yĵ+zk̂
v→avg
(Δr→)/(Δt)
v→
(dr→)/(dt)
vox
vocos𝜃o
voy
vosin𝜃o
R
((vcosθ)/g)((vsinθ)+sqrt((v2sin2θ)+2gy0))
T
(2𝝅r)/v
When two frames of reference A and B are moving relative to each other at constant velocity:
v→PA
v→PB + v→BA
When two frames of reference A and B are moving relative to each other at constant velocity:
a→PA
a→PB
F→net
ma→
W→
mg→
F→BC
-F→CB
Drag force for air:
D
.5CρAv2
Fc
mv2/R
Fnet
F+ - F-
Banked turn without friction:
𝝧
tan-1((v2)/(gR))
W
Fdcos𝛉
W
F·d
Wnet
ΔK
Ws
(1/2)kxi2 - (1/2)kxf2
W
m∫vdv
Area of a trapezoid:
A
(1/2)(a + b)(h)
P
Fvcosθ
ΔU
-W
Ug
mgh
Emec
K + U
W
ΔEmec + ΔEth + ΔEint
Eth
Ffd
P
(dE)/(dt)
K1+ U1 + Us1
K2+ U2+ Us2+ Wf
xcom
(m1x1+ m2x2)/(m1+ m2)
When the force is constant:
J→
FΔt
Pi
Pf
ϴ
s/r
ωavg
(Δϴ)/(Δt)
𝜶avg
(Δω)/(Δt)
ϴ - ϴ0
(1/2)(ω0 + ω)t
x - x0
(1/2)(v0 + v)t
s
ϴr
T
(2𝛑r)/v
ar
v2/r
ar
ω2r
𝜏
rFsinθ
𝜏net
I𝜶
P
𝞃ω
vcom
(ds)/(dt)
For smooth rolling motion:
vcom
ωR
When the axis of rotation is the point where the wheel touches the ground:
vtop
2(ωR)
When the axis of rotation is the point where the wheel touches the ground:
vtop
2vcom
IP
Icom + MR2
If the wheel does not slide:
F
Fs
If the wheel slides:
F
Fk
When rolling down a ramp without sliding:
acom
(-gsin𝝷)/(1 + Icom/MR2)
L→
r→p→sinθ
𝜏net
(dL)/(dt)
If there is no net external torque:
Li
Lf
gplanet
GMplanet/R2planet
v
(GM/R)1/2
E
-GmM/(2(semi-major axis))
ve
((2GM)/R)1/2
(dA)/(dt)
(1/2)r2𝜔
(dA)/(dt)
L/(2m)
GmM/(semi-major axis)2
mv2/(semi-major axis)
GmM/(semi-major axis)2
m𝜔2(semi-major axis)
T2
(4𝝿2/GM)(semi-major axis)3
Ra + Rp
2(semi-major axis)
KG
(GMm)/(2(semi-major axis))
KG
-UG/2
EG
-KG
EG
-(GMm)/(2(semi-major axis))
v
-⍵xmaxsin(⍵t + 𝜙)
a
⍵2xmaxcos(⍵t + 𝜙)
a
⍵2x
F
-m⍵2x
k
m⍵2
⍵
(k/m)1/2
Us
(1/2)kxmax2cos2(𝜔t + 𝜙)
K
(½)m𝜔2sin2(𝜔t + 𝜙)
E
(1/2)kxmax2
I
∑mr2
I/mgh
𝓁/g
Physical pendulum:
g
(8𝜋2L)/(3T2)