1/19
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
Standard deviation of a discrete random variable
θx= sqrt(E(xi-Mx)2Pi))
Mean of a discrete random variable
Mx=E(xiPi)
Mean of a sum of random variables
Mx+-y=Mx+-My
Mean of a linear combination of random variables
Max+by=aMx+bMy
Standard deviation of a linear combination of random variables
θax+by= sqrt(a2θx2+b2θy2) if x and y are independent
Standard deviation of the sum of 2 independent random variables
θs=sqrt(θx2+θy2)
Standard deviation of the difference of the independent random variables
θD=sqrt(θx2+θy2)
Standard deviation of a binomial random variable
θx=sqrt(np(1-p))
Mean of a binomial random variable
Mx=np
Geometric probability formula
P(X=x) = (1-p)x-1p
geometric distribution mean
Mx=1/p
geometric distribution standard deviation
θ=(sqrt(1-p))/p
Binomial probability
P(X=x) = (n/x)px(1-p)n-x
Binomial coefficient
(n/x)= n!/x!(n-x)!
Linear transformation of mean
Ma+bx=a + bMx
Linear Transformation of standard deviation
θa+bx= lblθx
Binomial setting
BINS
BINS
Binary, Independent, Number of trials, Same probability
Geometric setting
BITS
BITS
Binary, Independent, Trials until success, Same probability