1/26
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced | Call with Kai |
|---|
No study sessions yet.
Gradient (∇f)
The vector of partial derivatives:
Directional derivative
Dᵤf = ∇f · u (u must be a unit vector).
Divergence of F
div F = ∂F₁/∂x + ∂F₂/∂y + ∂F₃/∂z.
Curl of F
curl F = ∇ × F.
Conservative vector field
F = ∇f and curl F = 0 on a simply connected domain.
Scalar line integral
∫_C f ds = ∫ f(r(t))‖r′(t)‖ dt.
Vector line integral
∫_C F · dr = ∫ F(r(t)) · r′(t) dt.
Surface integral (scalar)
∬_S f dS = ∬ f(r(u,v)) ‖rᵤ × rᵥ‖ du dv.
Flux integral
∬_S F · n̂ dS.
Jacobian (cylindrical)
r.
Jacobian (spherical)
ρ² sinφ.
Green’s Theorem
∮C F · dr = ∬R (∂N/∂x − ∂M/∂y) dA.
Divergence Theorem
∬∂V F · n̂ dS = ∭_V div F dV.
Stokes’ Theorem
∮∂S F · dr = ∬S curl F · n̂ dS.
Fundamental Theorem for Line Integrals
If F = ∇f, ∫C F·dr = f(B) − f(A).
Mixed partials theorem
If fₓᵧ and fᵧₓ are continuous, then fₓᵧ = fᵧₓ.
Tangent plane formula
z − z₀ = fₓ(x₀,y₀)(x − x₀) + fᵧ(x₀,y₀)(y − y₀).
Multivariable chain rule
df/dt = fₓ dx/dt + fᵧ dy/dt (+ f_z dz/dt).
Polar double integral
∬ f(x,y) dA = ∫∫ f(r cosθ, r sinθ) r dr dθ.
Cylindrical triple integral
∭ f(r,θ,z) r dr dθ dz.
Spherical triple integral
∭ f(ρ,θ,φ) ρ² sinφ dρ dθ dφ.
Surface area (parametric)
A = ∬ ||rᵤ × rᵥ|| du dv.
When to use polar coordinates
Circular regions or integrands with x² + y².
When to use cylindrical coordinates
Regions with circular symmetry and a vertical z-component.
When to use spherical coordinates
Spherical symmetry, integrands with x²+y²+z².
When to use Green’s Theorem
Converting a line integral to a double integral (closed curve).
When a field is conservative
Check curl F = 0 (in simply connected region).