GEN CHEM 2 | First-Order Reactions and Half-Life

0.0(0)
studied byStudied by 0 people
call kaiCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/7

flashcard set

Earn XP

Description and Tags

Refer to Rates of Reaction Knowt for Rate Laws

Last updated 2:57 PM on 2/1/26
Name
Mastery
Learn
Test
Matching
Spaced
Call with Kai

No analytics yet

Send a link to your students to track their progress

8 Terms

1
New cards

Integrated Rate Laws

helps determine the reactant concentrations at any time during the reaction

2
New cards

Overall Order of Reaction

m + n

3
New cards

First-Order Reactions

  • a reaction whose rate depends on the reactant concentrations raised to the first power

  • for a reaction “A → product”, rate is expressed as “Rate = -(∆[A]/∆t)”.

  • Rate law is “rate = k[A]”, therefore “k[A] = -(∆[A]/∆t)”.

4
New cards

Determining k in First-Order Reactions

k = -(∆[A]/[A])(1/∆t)

ln([A]t/[A]0 = -kt) // Equation 1.1

ln[A]t = -kt +ln [A]0 // Equation 1.2

where [A]t is the A concentration at time t and [A]0 is the A concentration at the start

5
New cards

Using Integrated Rate Laws for First-Order Rwactions

  • Use Equation 1.2 to determine the concentration of the reactant after a certain time elapsed.

  • Use Equation 1.1 to determine how much time passed to get a certain concentration of the reactant.

6
New cards

Solving First-Order Reaction Problems

  1. Write the given quantities and their respective variables

  2. Choose which equation is more useful for the problem.

  3. Substitute the given values into the chosen equation.

  4. Manipulate the equation to solve the problem.

  5. Evaluate what the answer means and if it makes sense.

7
New cards

Half-Life (t1/2)

  • Time required for the concentration of a reactant to decrease to half its initial concentration.

  • Only depends on the rate constant for first-order reactions

8
New cards

Equations for Half-Life

  • t1/2 = ln 2/k // for half-life

  • [A]t = [A]0(1/2)n // for concentration after n half lives

  • t = t1/2(n) // for elapsed time after n half lives

Explore top flashcards