SAT MATH SHTUFF

0.0(0)
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/72

flashcard set

Earn XP

Description and Tags

SAT

Math

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

73 Terms

1
New cards
term image

a²=bc

2
New cards
term image

a²=b(b+c)

3
New cards
term image

a²=c(b+c)

4
New cards
term image

45-45-90

5
New cards
term image

30-60-90

6
New cards

If two parallel lines are cut by a transversal line…..

then the corresponding angles are congruent.

7
New cards

If two lines are cut by a transversal line, and corresponding angles are congruent

then the lines are parallel.

8
New cards

If two parallel lines are cut by a transversal line, then the alt….

ernate interior angles are congruent.

9
New cards

If two lines are cut by a transversal line, and the alternate interior angles are congruent,

then the lines are parallel.

10
New cards

If two lines are cut by a transversal line, and the consecutive (same side) ) interior angles are supplementary,

then the lines are parallel

11
New cards

The sum of the measures of the interior angles of a triangle is

180 degrees

12
New cards

The measure of an exterior angle is equal to the sum of

the two non-adjacent (remote) interior angles

13
New cards

The interior angles of a polygon with n sides always sum up to

180(n-2)

14
New cards

The interior angles of a polygon with n sides always sum up to —- degrees

360

15
New cards

For a regular polygon, the measure of an interior angle is

(180(n-2))/n

16
New cards

For a regular polygon, the measure of an exterior angle is

360/n

17
New cards

The length of one side of a triangle is between

the difference of the two other sides and the sum of the two other sides.

18
New cards

circle

perimeter: 2 (pi) {r}

area: (pi) r²

19
New cards

parallelogram

perimeter: 2(l+w)

area: b(h)

20
New cards

Trapezoid with bases b1 and b2 and height h

perimeter: sum of sides

area: {(b1 + b2 ) / 2} (h)

21
New cards

Rhombus with diagonals d1 and d2 and side s

perimeter: 4s

area: (d1 d2) / 2

22
New cards

Cube

surface area: 6s²

volume:

23
New cards

Sphere

surface area: 4 (pi) r²

volume: (4/3) (pi) r³

24
New cards

cylinder

surface area: 2 (pi) {r} (h) + (pi) r²

volume: 1/3 (pi) (r²) (h)

25
New cards

cone (w slant height s)

surface area: (pi) {r} (s) + (pi) r²

volume: 1/3 (pi) (r²) (h)

26
New cards

rectangular prism

surface area: 2(lw + wh + hl)

volume: lwh

27
New cards

pyramid w base B and height h

surface area: ———

volume: 1/3 (B) (h)

28
New cards

triangular prism w base B and height h

surface area: ———

volume: Bh

29
New cards

Two figures are similar if

  • they have the same shape.

  • their corresponding angles are equal.

  • the ratio of their sides are the same.

30
New cards

If two plane figures are similar with a scale factor of a/b, then their perimeters

are also in the ratio of a/b

31
New cards

If two plane figures are similar with a scale factor of a/b, then their areas

are also in a ratio of (a/b)²

32
New cards

If two solids are similar with a scale factor of a/b, then the surface areas

are in a ratio of (a/b)²

33
New cards

if two solids are similar with a scale factor of a/b, then the volumes

are in a ratio of (a/b)³

34
New cards

SSS equivilancy

side side side - if all three sides are the same length, then the triangles are congruent.

35
New cards

SAS

side angle side - if two triangles have two sides the same length, and the angle between the two sides has the same measure in both triangles, then the triangles are congruent.

36
New cards

ASA

angle side angle - if two triangles have two angles the same, and the side that connects the two angles is the same length in both triangles, then the triangles are congruent.

37
New cards

AAS

angle angle side - if two triangles have two angles that are the same, and the side opposite to one of the angles has the same length in both triangles, then the triangles are congruent.

38
New cards

HL

hypotenuse leg - if there are two right triangles where the hypothenuse is the same length in both and one other side is the same length in both triangles then the triangles are congruent.

39
New cards

Two triangles are similar if:

  • all of their angles are equal; and

  • corresponding sides are in the same ratio.

40
New cards

AA

angle angle - if two triangles have two angles that are the same, then the triangles are similar.

41
New cards

SAS

side angle side - this doesn't mean the sides are the same length, it means the ratio of the sides is the same.

42
New cards

SSS ratio

side side side - if the ratio of all three sides are the same, then the triangles are similar.

43
New cards

Pythagorean triple: 3,4 &….

5

44
New cards

Pythagorean triple: 5,12, &…

13

45
New cards

Pythagorean triple: 7, 24, &…

25

46
New cards

Pythagorean triple: 8, 15, &…

17

47
New cards

If two angles, A and B are complementary, then

sin A= cos B & sin B= cos A

48
New cards

if sin A = cos B or sin B= cos A, then

the two angles (A & B) are complementary.

49
New cards

for right triangle ABC, where C is the right angle,

sin A= cos B & cos A= sin B

50
New cards

360 degrees = ___ radians

2pi

51
New cards

degrees —> radians

multiply the number of degrees by pi/180

52
New cards

radians —> degrees

multiply the number of radians by 180/pi

53
New cards

Slope-intercept form

y=mx+b

54
New cards

Point-Slope form

y - y1 = m(x - x1)

55
New cards

standard form

Ax + By = C

56
New cards

if equation is in standard form use ____ to find slope

-A/B

57
New cards

if equation is in standard form use ____ to find y intercept

C/B

58
New cards

to find x intercept…

set y=0

59
New cards

to find y intercept….

set x=0

60
New cards

the equation of a horizontal line is…

y=b, where b is a constant and the y intercept

61
New cards

the slope of a vertical line is…

undefined

62
New cards

the slope of a horizontal line is…

0

63
New cards

the equation of a vertical line is…

x=a where a is a constant and the x intercept of the line

64
New cards

two lines are perpendicular id they have…

negative (opposite) reciprocal slopes

65
New cards

For up/down shift of a function, the constant k

is added/subtracted at the end of the function

66
New cards

For right/left shift of a function,

x is replaced by x - k or x + k

67
New cards

To find the center of a circle when the end points of a diameter are given, we use Midpoint Formula.

where (x1, y1) and (x2, y2) are the endpoints of the diameter.

<p>where <em>(x<sub>1</sub>, y<sub>1</sub>)</em> and <em>(x<sub>2</sub>, y<sub>2</sub>)</em> are the endpoints of the diameter.</p>
68
New cards

To find the radius of a circle when the end points of a diameter are given, we use Distance Formula.

where (x1, y1) and (x2, y2) are the endpoints of the diameter.

<p>where <em>(x<sub>1</sub>, y<sub>1</sub>)</em> and <em>(x<sub>2</sub>, y<sub>2</sub>)</em> are the endpoints of the diameter.</p>
69
New cards

To quickly find the center without completing the square,

cut the x and y coefficients into half and change the sign.

70
New cards

The point where tangent meets the circle is called…

point of tangency

71
New cards

The tangent is….

perpendicular to the radius of the circle at the point of tangency.

72
New cards

A central angle is an angle….

whose vertex is the center of a circle and whose sides are radii intersecting the circle in two distinct points.

73
New cards

equation of a circle

(x - a)² + (y + b)² = r²