1/43
Pythagorean, Angle, and Reciprocal Identities Sum, Difference, Double, and Half Angle Identities
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
Pythagorean Identity (sin & cos)
sin²θ + cos²θ = 1
Pythagorean Identity (tan & sec)
1 + tan²θ = sec²θ
Pythagorean Identity (cot & csc)
1 + cot²θ = csc²θ
Reciprocal Identity (csc)
cscθ = 1 / sinθ
Reciprocal Identity (sec)
secθ = 1 / cosθ
Reciprocal Identity (cot)
cotθ = 1 / tanθ
Quotient Identity (tan)
tanθ = sinθ / cosθ
Quotient Identity (cot)
cotθ = cosθ / sinθ
Co-Function Identity (sin & cos)
sin(90° − θ) = cosθ
Co-Function Identity (cos & sin)
cos(90° − θ) = sinθ
Co-Function Identity (tan & cot)
tan(90° − θ) = cotθ
Co-Function Identity (cot & tan)
cot(90° − θ) = tanθ
Co-Function Identity (sec & csc)
sec(90° − θ) = cscθ
Co-Function Identity (csc & sec)
csc(90° − θ) = secθ
Even/Odd Identity (sin)
sin(−θ) = −sinθ
Even/Odd Identity (cos)
cos(−θ) = cosθ
Even/Odd Identity (tan)
tan(−θ) = −tanθ
Even/Odd Identity (csc)
csc(−θ) = −cscθ
Even/Odd Identity (sec)
sec(−θ) = secθ
Even/Odd Identity (cot)
cot(−θ) = −cotθ
Sum Formula (sin(A + B))
sin(A + B) = sinA cosB + cosA sinB
Sum Formula (cos(A + B))
cos(A + B) = cosA cosB − sinA sinB
Sum Formula (tan(A + B))
tan(A + B) = (tanA + tanB) / (1 − tanA tanB)
Difference Formula (sin(A − B))
sin(A − B) = sinA cosB − cosA sinB
Difference Formula (cos(A − B))
cos(A − B) = cosA cosB + sinA sinB
Difference Formula (tan(A − B))
tan(A − B) = (tanA − tanB) / (1 + tanA tanB)
Double-Angle (sin(2θ))
sin(2θ) = 2 sinθ cosθ
Double-Angle (cos(2θ) v1)
cos(2θ) = cos²θ − sin²θ
Double-Angle (cos(2θ) v2)
cos(2θ) = 1 − 2sin²θ
Double-Angle (cos(2θ) v3)
cos(2θ) = 2cos²θ − 1
Double-Angle (tan(2θ))
tan(2θ) = (2 tanθ) / (1 − tan²θ)
Half-Angle (sin(θ/2))
sin(θ/2) = ±√[(1 − cosθ) / 2]
Half-Angle (cos(θ/2))
cos(θ/2) = ±√[(1 + cosθ) / 2]
Half-Angle (tan(θ/2) root)
tan(θ/2) = ±√[(1 − cosθ) / (1 + cosθ)]
Half-Angle (tan(θ/2) sin/cos)
tan(θ/2) = sinθ / (1 + cosθ)
Half-Angle (tan(θ/2) alt)
tan(θ/2) = (1 − cosθ) / sinθ