1/161
Terms pulled from the Atom's First textbook (vocab chapters 1-3)
Name | Mastery | Learn | Test | Matching | Spaced | Call with Kai |
|---|
No study sessions yet.
accuracy
how closely a measurement aligns with a correct value
atom
smallest particle of an element that can enter into a chemical combination
Celsius (°C)
unit of temperature; water freezes at 0 °C and boils at 100 °C on this scale
chemical change
change producing a different kind of matter from the original kind of matter
chemical property
behavior that is related to the change of one kind of matter into another kind of matter
chemistry
study of the composition, properties, and interactions of matter
compound
pure substance that can be decomposed into two or more elements
cubic centimeter (cm3 or cc)
volume of a cube with an edge length of exactly 1 cm
cubic meter (m3)
SI unit of volume
density
ratio of mass to volume for a substance or object
dimensional analysis
(also, factor-label method) versatile mathematical approach that can be applied to computations ranging from simple unit conversions to more complex, multi-step calculations involving several different quantities
element
substance that is composed of a single type of atom; a substance that cannot be decomposed by a chemical change
exact number
number derived by counting or by definition
extensive property
property of a substance that depends on the amount of the substance
Fahrenheit
unit of temperature; water freezes at 32 °F and boils at 212 °F on this scale
gas
state in which matter has neither definite volume nor shape
heterogeneous mixture
combination of substances with a composition that varies from point to point
homogeneous mixture
(also, solution) combination of substances with a composition that is uniform throughout
hypothesis
tentative explanation of observations that acts as a guide for gathering and checking information
intensive property
property of a substance that is independent of the amount of the substance
kelvin (K)
SI unit of temperature; 273.15 K = 0 ºC
kilogram (kg)
standard SI unit of mass
law
statement that summarizes a vast number of experimental observations, and describes or predicts some aspect of the natural world
law of conservation of matter
when matter converts from one type to another or changes form, there is no detectable change in the total amount of matter present
length
measure of one dimension of an object
liquid
state of matter that has a definite volume but indefinite shape
liter (L)
(also, cubic decimeter) unit of volume; 1 L = 1,000 cm3
macroscopic domain
realm of everyday things that are large enough to sense directly by human sight and touch
mass
fundamental property indicating amount of matter
matter
anything that occupies space and has mass
meter (m)
standard metric and SI unit of length; 1 m = approximately 1.094 yards
microscopic domain
realm of things that are much too small to be sensed directly
milliliter (mL)
1/1,000 of a liter; equal to 1 cm3
mixture
matter that can be separated into its components by physical means
molecule
bonded collection of two or more atoms of the same or different elements
physical change
change in the state or properties of matter that does not involve a change in its chemical composition
physical property
characteristic of matter that is not associated with any change in its chemical composition
plasma
gaseous state of matter containing a large number of electrically charged atoms and/or molecules
precision
how closely a measurement matches the same measurement when repeated
pure substance
homogeneous substance that has a constant composition
rounding
procedure used to ensure that calculated results properly reflect the uncertainty in the measurements used in the calculation
scientific method
path of discovery that leads from question and observation to law or hypothesis to theory, combined with experimental verification of the hypothesis and any necessary modification of the theory
second (s)
SI unit of time
SI units (International System of Units)
standards fixed by international agreement in the International System of Units (Le Système International d’Unités)
significant figures
(also, significant digits) all of the measured digits in a determination, including the uncertain last digit
solid
state of matter that is rigid, has a definite shape, and has a fairly constant volume
symbolic domain
specialized language used to represent components of the macroscopic and microscopic domains, such as chemical symbols, chemical formulas, chemical equations, graphs, drawings, and calculations
temperature
intensive property representing the hotness or coldness of matter
theory
well-substantiated, comprehensive, testable explanation of a particular aspect of nature
uncertainty
estimate of amount by which measurement differs from true value
unit
standard of comparison for measurements
unit conversion factor
ratio of equivalent quantities expressed with different units; used to convert from one unit to a different unit
volume
amount of space occupied by an object
weight
force that gravity exerts on an object
alpha particle (α particle)
positively charged particle consisting of two protons and two neutrons
anion
negatively charged atom or molecule (contains more electrons than protons)
atomic mass
average mass of atoms of an element, expressed in amu
atomic mass unit (amu)
(also, unified atomic mass unit, u, or Dalton, Da) unit of mass equal to 1/12 of the mass of a 12C atom
atomic number (Z)
number of protons in the nucleus of an atom
cation
positively charged atom or molecule (contains fewer electrons than protons)
chemical symbol
one-, two-, or three-letter abbreviation used to represent an element or its atoms
Dalton (Da)
alternative unit equivalent to the atomic mass unit
Dalton’s atomic theory
set of postulates that established the fundamental properties of atoms
electron
negatively charged, subatomic particle of relatively low mass located outside the nucleus
empirical formula
formula showing the composition of a compound given as the simplest whole-number ratio of atoms
fundamental unit of charge
(also called the elementary charge) equals the magnitude of the charge of an electron (e) with e = 1.602 × 10−19 C
ion
electrically charged atom or molecule (contains unequal numbers of protons and electrons)
isomers
compounds with the same chemical formula but different structures
isotopes
atoms that contain the same number of protons but different numbers of neutrons
law of constant composition
(also, law of definite proportions) all samples of a pure compound contain the same elements in the same proportions by mass
law of definite proportions
(also, law of constant composition) all samples of a pure compound contain the same elements in the same proportions by mass
law of multiple proportions
when two elements react to form more than one compound, a fixed mass of one element will react with masses of the other element in a ratio of small whole numbers
mass number (A)
sum of the numbers of neutrons and protons in the nucleus of an atom
molecular formula
formula indicating the composition of a molecule of a compound and giving the actual number of atoms of each element in a molecule of the compound.
neutron
uncharged, subatomic particle located in the nucleus
nucleus
massive, positively charged center of an atom made up of protons and neutrons
proton
positively charged, subatomic particle located in the nucleus
spatial isomers
compounds in which the relative orientations of the atoms in space differ
structural formula
shows the atoms in a molecule and how they are connected
structural isomer
one of two substances that have the same molecular formula but different physical and chemical properties because their atoms are bonded differently
unified atomic mass unit (u)
alternative unit equivalent to the atomic mass unit
actinide
inner transition metal in the bottom of the bottom two rows of the periodic table
alkali metal
element in group 1
alkaline earth metal
element in group 2
amplitude
extent of the displacement caused by a wave
atomic orbital
mathematical function that describes the behavior of an electron in an atom (also called the wavefunction)
Aufbau principle
procedure in which the electron configuration of the elements is determined by “building” them in order of atomic numbers, adding one proton to the nucleus and one electron to the proper subshell at a time
blackbody
idealized perfect absorber of all incident electromagnetic radiation; such bodies emit electromagnetic radiation in characteristic continuous spectra called blackbody radiation
Bohr’s model of the hydrogen atom
structural model in which an electron moves around the nucleus only in circular orbits, each with a specific allowed radius
chalcogen
element in group 16
continuous spectrum
electromagnetic radiation given off in an unbroken series of wavelengths (e.g., white light from the sun)
core electron
electron in an atom that occupies the orbitals of the inner shells
covalent bond
attractive force between the nuclei of a molecule’s atoms and pairs of electrons between the atoms
covalent compound
(also, molecular compound) composed of molecules formed by atoms of two or more different elements
covalent radius
one-half the distance between the nuclei of two identical atoms when they are joined by a covalent bond
d orbital
region of space with high electron density that is either four lobed or contains a dumbbell and torus shape; describes orbitals with ℓ = 2.
degenerate orbitals
orbitals that have the same energy
effective nuclear charge
charge that leads to the Coulomb force exerted by the nucleus on an electron, calculated as the nuclear charge minus shielding
electromagnetic radiation
energy transmitted by waves that have an electric-field component and a magnetic-field component
electromagnetic spectrum
range of energies that electromagnetic radiation can comprise, including radio, microwaves, infrared, visible, ultraviolet, X-rays, and gamma rays