1/10
Flashcards summarizing key concepts related to convergence and divergence tests for series.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Geometric Series
Converges if |r| < 1 and diverges if |r| ≥ 1; sum is s = a / (1 - r).
Test for Divergence
A series diverges if lim(n→∞) an ≠ 0 or does not exist; inconclusive if lim(n→∞) an = 0.
p-Series
Converges if p > 1 and diverges if p ≤ 1.
Integral Test
Converges if the integral ∫ from 1 to ∞ of f(x)dx converges; f must be continuous, positive, and decreasing.
Comparison Test
If Σbn converges and an ≤ bn for all n, then Σan converges; if Σbn diverges and an ≥ bn, then Σan diverges.
Limit Comparison Test
If lim(n→∞) an/bn = c (where c > 0), then both series converge or both diverge.
Alternating Series
Converges if bn+1 ≤ bn for all n and lim(n→∞) bn = 0.
Absolute Convergence
A series converges absolutely if Σ|an| converges, implying Σan converges.
Conditional Convergence
A series converges conditionally if Σan converges but Σ|an| diverges.
Ratio Test
Converges absolutely if L < 1, diverges if L > 1 or ∞, inconclusive if L = 1.
Root Test
Converges absolutely if L < 1, diverges if L > 1 or ∞, inconclusive if L = 1.