1/34
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
d/dx[tan-1]
1/(1+x²)
d/dx[cot-1]
-1/(1+x²)
d/dx[sec-1]
1/x(√x²-1)
d/dx[csc-1]
-1/x(√x²-1)
d/dx[sin-1]
1/(√1-x²)
d/dx[cos-1]
-1/√1-x²
d/dx[sin(x)]
cos(x)
d/dx[cos(x)]
-sin(x)
d/dx[tan(x)]
sec²(x)
d/dx[cot(x)]
-csc²(x)
d/dx[sec(x)]
sec(x) * tan(x)
d/dx[csc(x)]
-csc(x) * cot(x)
d/dx[ex]
ex
d/dx[bx]
ln(b) * bx
d/dx[ef(x)]
f’(x) * ef(x)
d/dx[bf(x)]
ln(b) * f’(x) * bf(x)
a. limx→0(ex-1)/x =
a. 1
limx→0(bx-1)/x =
ln(b)
d/dx[ln(x)] for x>0
1/x
d/dx[ln(|x|)] for x/=0
1/x
d/dx[logb(x)] for x>0
1/(ln(b)) * x
d/dx[logb(|x|)] for x/=0
1/(ln(b)) * x
d/dx[ln(f(x))] for f(x)>0 with f’(x) defined
f’(x)/f(x)
d/dx[ln|f(x)|] for f(x)/=0 with f’(x) defined
f’(x)/f(x)
For Inverse Trig Function Derivatives:
Remember the original, make it negative for “co-”
For Trig Function Derivatives: If “co-” added,
Add a “co-” to original and make negative
b. limx→0sin(x)/x =
b. 1
limx→0cos(x)-1/x =
0
tan(x) =
sin(x)/cos(x)
sec(x) =
1/cos(x)
csc(x) =
1/sin(x)
cot(x) =
1/tan(x) = cos(x)/sin(x)
c. sin2(x) + cos2(x) =
c. 1
sin(A+B) =
sin(A)cos(B) + cos(A)sin(B)
cos(A+B) =
cos(A)cos(B) - sin(A)cos(B)